精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=cosxsin(x+$\frac{π}{3}}$)-$\sqrt{3}$cos2x+$\frac{{\sqrt{3}}}{4}$,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)在[-$\frac{π}{4},\frac{π}{3}$]上的值域.

分析 (1)利用二倍角的正弦公式、余弦公式变形,两角差的正弦公式化简解析式即可;
(2)由x的范围求出$2x-\frac{π}{3}$的范围,由正弦函数的图象与性质求出f(x)在[-$\frac{π}{4},\frac{π}{3}$]上的值域.

解答 解:(1)由题意得,
$f(x)=cosx(\frac{1}{2}sinx+\frac{{\sqrt{3}}}{2}cosx)-\sqrt{3}{cos^2}x+\frac{{\sqrt{3}}}{4}$
=$\frac{1}{2}sinxcosx-\frac{{\sqrt{3}}}{2}{cos^2}x+\frac{{\sqrt{3}}}{4}$
=$\frac{1}{4}sin2x-\frac{{\sqrt{3}}}{4}(1+cos2x)+\frac{{\sqrt{3}}}{4}$
=$\frac{1}{2}sin(2x-\frac{π}{3})$,
∴f(x)的最小正周期为$T=\frac{2π}{2}=π$.
(2)∵$-\frac{π}{4}≤x≤\frac{π}{3}$,∴$-\frac{5π}{6}≤2x-\frac{π}{3}≤\frac{π}{3}$,
∴$-1≤sin(2x-\frac{π}{3})≤\frac{\sqrt{3}}{2},-\frac{1}{2}≤\frac{1}{2}sin(2x-\frac{π}{3})≤\frac{\sqrt{3}}{4}$,
∴f(x)的值域是$[-\frac{1}{2},\frac{{\sqrt{3}}}{4}]$.

点评 本题考查正弦函数的图象与性质,三角恒等变换中的公式,考查整体思想,化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(-2-x),且函数y=f(x-1)为偶函数,f(-3)=e,则不等式f(x)<ex的解集为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设命题p:?x0∈(0,+∞),3x0+x0=$\frac{1}{2016}$;命题q:?a,b∈(0,+∞),a+$\frac{1}{b},b+\frac{1}{a}$中至少有一个不小于2,则下列命题为真命题的是(  )
A.p∧qB.(?p)∧qC.p∧(?q)D.(?p)∧(?q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.分别抛掷两枚质地均匀的硬币,设“第1枚为正面”为事件A,“第2枚为正面”为事件B,“2枚结果相同”为事件C,则A,B,C中相互独立的有(  )
A.0对B.1对C.2对D.3对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.△ABC中,A=120°,a=4,c=2,则边长b为(  )
A.$\sqrt{13}$+1B.$\sqrt{13}$-1C.2$\sqrt{3}$+1D.2$\sqrt{3}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在锐角△ABC中,a、b分别是角A、B的对边,若2bsinA=a,则角B等于(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.给出命题:
①在空间中,垂直于同一平面的两个平面平行;
②设l,m是不同的直线,α是一个平面,若l⊥α,l∥m,则m⊥α;
③已知α,β表示两个不同平面,m为平面α内的一条直线,“α⊥β”是“m⊥β”的充要条件;
④在三棱锥S-ABC中,SA⊥BC,SB⊥AC,则S在平面ABC内的射影是△ABC的垂心;
⑤a,b是两条异面直线,P为空间一点,过P总可以作一个平面与a,b之一垂直,与另一条平行.
其中,正确的命题是②④.(只填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.将椭圆x2+$\frac{y^2}{4}$=1上每一点的横坐标不变纵坐标变为原来的$\frac{1}{2}$,得到曲线C.
(1)写出曲线C的参数方程;
(2)设点D在曲线C上,C在D处的切线与直线l:y=x+2垂直,求D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设a、b为实数,求证:$\frac{\sqrt{1+{a}^{2}}+\sqrt{1+{b}^{2}}}{2}$≥$\sqrt{1+(\frac{a+b}{2})^{2}}$.

查看答案和解析>>

同步练习册答案