A. | $\frac{{4+3\sqrt{3}}}{10}$ | B. | $\frac{{4-3\sqrt{3}}}{10}$ | C. | $\frac{{3\sqrt{3}-4}}{10}$ | D. | $\frac{{-3\sqrt{3}-4}}{10}$ |
分析 由条件利用同角三角函数的基本关系求得cosα的值,再利用两角差的正弦公式求得要求式子的值.
解答 解:∵α为第二象限的角,sinα=$\frac{3}{5}$,∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{4}{5}$,
∴$sin(α-\frac{π}{6})$=sinαcos$\frac{π}{6}$-cosαsin$\frac{π}{6}$=$\frac{3}{5}×\frac{\sqrt{3}}{2}$+$\frac{4}{5}$×$\frac{1}{2}$=$\frac{3\sqrt{3}+4}{10}$,
故选:A.
点评 本题主要考查同角三角函数的基本关系、两角差的正弦公式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\overrightarrow{i}$+$\overrightarrow{j}$+$\overrightarrow{k}$ | B. | $\frac{1}{3}$$\overrightarrow{i}$+$\frac{1}{2}$$\overrightarrow{j}$+$\frac{1}{5}$$\overrightarrow{k}$ | C. | 3$\overrightarrow{i}$+2$\overrightarrow{j}$+5$\overrightarrow{k}$ | D. | 3$\overrightarrow{i}$+2$\overrightarrow{j}$-5$\overrightarrow{k}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com