精英家教网 > 高中数学 > 题目详情
20.已知α为第二象限的角,sinα=$\frac{3}{5}$则$sin(α-\frac{π}{6})$=(  )
A.$\frac{{4+3\sqrt{3}}}{10}$B.$\frac{{4-3\sqrt{3}}}{10}$C.$\frac{{3\sqrt{3}-4}}{10}$D.$\frac{{-3\sqrt{3}-4}}{10}$

分析 由条件利用同角三角函数的基本关系求得cosα的值,再利用两角差的正弦公式求得要求式子的值.

解答 解:∵α为第二象限的角,sinα=$\frac{3}{5}$,∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{4}{5}$,
∴$sin(α-\frac{π}{6})$=sinαcos$\frac{π}{6}$-cosαsin$\frac{π}{6}$=$\frac{3}{5}×\frac{\sqrt{3}}{2}$+$\frac{4}{5}$×$\frac{1}{2}$=$\frac{3\sqrt{3}+4}{10}$,
故选:A.

点评 本题主要考查同角三角函数的基本关系、两角差的正弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.从观测点C测得点A的方位角是北偏东40°,点B的方位角是南偏东20°,若点A,B与点C的距离均为10cm,求A,B两点之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若sin(π+α)=-$\frac{1}{2}$,则sin(4π-α)的值是(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,内角A,B,C的对边分别为a,b,c.已知$\frac{cosA-2cosC}{cosB}$=$\frac{2c-a}{b}$.
(Ⅰ)求证:sinC=2sinA;
(Ⅱ)若cosB=$\frac{1}{4}$,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列{an}满足an+1=an-2(n∈N+),他的前n项的和为Sn,则Sn的最大值是S3是a1=5的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.长方体ABCD-A1B1C1D1中,若$\overrightarrow{AB}$=3i,$\overrightarrow{AD}$=2j,$\overrightarrow{A{A}_{1}}$=5k,则$\overrightarrow{A{C}_{1}}$=(  )
A.$\overrightarrow{i}$+$\overrightarrow{j}$+$\overrightarrow{k}$B.$\frac{1}{3}$$\overrightarrow{i}$+$\frac{1}{2}$$\overrightarrow{j}$+$\frac{1}{5}$$\overrightarrow{k}$C.3$\overrightarrow{i}$+2$\overrightarrow{j}$+5$\overrightarrow{k}$D.3$\overrightarrow{i}$+2$\overrightarrow{j}$-5$\overrightarrow{k}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}是公比为q的单调递增的等比数列,且a1+a4=9,a2a3=8,则a1=1,q=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$f(x)=sin(2x+\frac{π}{3})+sin(2x-\frac{π}{3}),g(x)=\sqrt{3}cos2x$
(1)设h(x)=f(x)g(x),求函数h(x)在[0,π]上的单调递减区间;
(2)若一动直线x=t与函数y=f(x),y=g(x)的图象分别交于M,N两点,求|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)已知4x+x-1=6,求$8{x^{\frac{3}{2}}}+{x^{-\frac{3}{2}}}$的值;
(2)若log32=m,log53=n,用m,n表示log415.

查看答案和解析>>

同步练习册答案