精英家教网 > 高中数学 > 题目详情
已知在三棱锥S-ABC中,∠ACB=90°,又SA⊥平面ABC,AD⊥SC于D,求证:AD⊥平面SBC.
分析:要证明AD⊥平面SBC,只要证明AD⊥SC(已知),AD⊥BC,而结合已知∠ACB=90°,又SA⊥平面ABC,及线面垂直的判定定理及性质即可证明
解答:证明:∵SA⊥面ABC,
∴BC⊥SA;
∵∠ACB=90°,即AC⊥BC,且AC、SA是面SAC内的两相交线,
∴BC⊥面SAC;
又AD?面SAC,∴BC⊥AD,
又∵SC⊥AD,且BC、SC是面SBC内两相交线,
∴AD⊥面SBC.
点评:本题主要考查了直线与平面垂直,平面与平面垂直的相互转化,线面垂直的判定定理的应用,属于基础试题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在三棱锥T-ABC中,TA,TB,TC两两垂直,T在地面ABC上的投影为D,给出下列命题:
①TA⊥BC,TB⊥AC,TC⊥AB;
②△ABC是锐角三角形;
1
TD2
=
1
TA2
+
1
TB2
+
1
TC2

S
2
△ABC
=
1
3
(
S
2
△TAB
+
S
2
△TAC
+
S
2
△TBC
)
(注:S△ABC表示△ABC的面积)
其中正确的是
 
(写出所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在三棱锥S-ABC中,底面是边长为4的正三角形,侧面SAC⊥底面ABC,M,N分别是AB,SB的中点,SA=SC=2
3

(1)求证AC⊥SB
(2)求二面角N-CM-B的大小
(3)求点B到面CMN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在三棱锥S-ABC中,底面是边长为4的正三角形,侧面SAC⊥底面ABC,M,N分别是AB,SB的中点,SA=SC=数学公式
(1)求证AC⊥SB
(2)求二面角N-CM-B的大小
(3)求点B到面CMN的距离.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年河南省豫东三校高二(下)期中数学试卷(解析版) 题型:解答题

已知在三棱锥S-ABC中,底面是边长为4的正三角形,侧面SAC⊥底面ABC,M,N分别是AB,SB的中点,SA=SC=
(1)求证AC⊥SB
(2)求二面角N-CM-B的大小
(3)求点B到面CMN的距离.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省宜春市上高二中高三(下)第七次月考数学试卷(理科)(解析版) 题型:填空题

已知在三棱锥T-ABC中,TA,TB,TC两两垂直,T在地面ABC上的投影为D,给出下列命题:
①TA⊥BC,TB⊥AC,TC⊥AB;
②△ABC是锐角三角形;

(注:S△ABC表示△ABC的面积)
其中正确的是    (写出所有正确命题的编号).

查看答案和解析>>

同步练习册答案