分析 (1)由已知利用正弦定理即可计算得解.
(2)由题意可求∠ACB=45°,进而利用正弦定理可求sin∠ABC=$\frac{1}{2}$,利用小边对小角,特殊角的三角函数值即可得解.
解答 (本题满分为10分)
解:(1)由于$\frac{\sqrt{6}}{sin45°}$=$\frac{AC}{sin60°}$,…3分
可得:AC=$\frac{\sqrt{6}×\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}}$=3…5分
(2)∵AD∥BC,
∴∠ACB=45°,…6分
∴由$\frac{3\sqrt{2}}{sin45°}$=$\frac{3}{sin∠ABC}$,可得:sin∠ABC=$\frac{1}{2}$,…9分
∴利用小边对小角可得:∠ABC=30°…10分
点评 本题主要考查了正弦定理在解三角形中的应用,考查了运算求解能力,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-3,1) | B. | (-3,1] | C. | (-∞,-3]∪(1,+∞) | D. | (-∞,-3)∪[1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com