精英家教网 > 高中数学 > 题目详情
(2013•重庆)如图,四棱锥P-ABCD中,PA⊥底面ABCD,PA=2
3
,BC=CD=2,∠ACB=∠ACD=
π
3

(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若侧棱PC上的点F满足PF=7FC,求三棱锥P-BDF的体积.
分析:(Ⅰ)由等腰三角形的性质可得BD⊥AC,再由PA⊥底面ABCD,可得PA⊥BD.再利用直线和平面垂直的判定定理证明BD⊥平面PAC.
(Ⅱ)由侧棱PC上的点F满足PF=7FC,可得三棱锥F-BCD的高是三棱锥P-BCD的高的
1
8
.求出△BCD的面积S△BCD,再根据三棱锥P-BDF的体积 V=VP-BCD-VF-BCD=
1
3
•S△BCD•PA
-
1
3
•S△BCD• 
1
8
•PA
,运算求得结果.
解答:解:(Ⅰ)∵BC=CD=2,∴△BCD为等腰三角形,再由 ∠ACB=∠ACD=
π
3
,∴BD⊥AC.
再由PA⊥底面ABCD,可得PA⊥BD.
而PA∩AC=A,故BD⊥平面PAC.
(Ⅱ)∵侧棱PC上的点F满足PF=7FC,
∴三棱锥F-BCD的高是三棱锥P-BCD的高的
1
8

△BCD的面积S△BCD=
1
2
BC•CD•sin∠BCD=
1
2
×2×2×sin
3
=
3

∴三棱锥P-BDF的体积 V=VP-BCD-VF-BCD=
1
3
•S△BCD•PA
-
1
3
•S△BCD• 
1
8
•PA
=
7
8
×
1
3
•S△BCD•PA

=
7
24
×
3
×2
3
=
7
4
点评:本题主要考查直线和平面垂直的判定定理的应用,用间接解法求棱锥的体积,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•重庆)如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•重庆)如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•重庆)如图,四棱锥P-ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=
π3
,F为PC的中点,AF⊥PB.
(1)求PA的长;
(2)求二面角B-AF-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•重庆)如图,椭圆的中心为原点O,长轴在x轴上,离心率e=
2
2
,过左焦点F1作x轴的垂线交椭圆于A、A′两点,|AA′|=4.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)取垂直于x轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P'Q,求圆Q的标准方程.

查看答案和解析>>

同步练习册答案