精英家教网 > 高中数学 > 题目详情

已知命题:方程所表示的曲线为焦点在x轴上的椭圆;命题:实数满足不等式<0.

(1)若命题为真,求实数的取值范围;

(2)若命题是命题的充分不必要条件,求实数的取值范围

 

【答案】

(1)∵方程所表示的曲线为焦点在轴上的椭圆

………………3分

解得:………………6分

(2)∵命题P是命题q的充分不必要条件

是不等式解集的真子集…9分

法一:因方程两根为

故只需………………12分

法二:令,因……………9分

解得: 

【解析】(1)命题p为真应满足,解不等式即可求解;

(2)本题可转化为满足p真的t的取值集合,是满足q为真的t的取值集合的真子集.可以考虑借助二次函数与二次不等式的关系求解.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:方程
x2
3-t
+
y2
t+1
=1
所表示的曲线为焦点在x轴上的椭圆;命题q:实数a满足不等式t2-(a-1)t-a<0.
(1)若命题p为真,求实数t的取值范围;
(2)若命题p是命题q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题
p:“a>0,b>0”是“方程ax2+by2=1”表示椭圆的充要条件;
q:在复平面内,复数
1-i
1+i
所表示的点在第二象限

r:直线l⊥平面α,平面α∥平面β,则直线l⊥平面β;
s:同时抛掷两枚硬币,出现一正一反的概率为
1
3

则下列复合命题中正确的是(  )
A、p且qB、r或s
C、非rD、q或s

查看答案和解析>>

科目:高中数学 来源:2013届江西省高二下学期期中考试理科数学试卷(解析版) 题型:解答题

已知命题:方程所表示的曲线为焦点在x轴上的椭圆;命题:实数满足不等式<0.

(1)若命题为真,求实数的取值范围;

(2)若命题是命题的充分不必要条件,求实数的取值范围

 

查看答案和解析>>

科目:高中数学 来源:2013届江西省高二下学期期中考试文科数学试卷(解析版) 题型:解答题

已知命题:方程所表示的曲线为焦点在y轴上的椭圆;命题:实数满足不等式<0.

(1)若命题为真,求实数的取值范围;

(2)若命题是命题的充分不必要条件,求实数的取值范围

 

查看答案和解析>>

同步练习册答案