精英家教网 > 高中数学 > 题目详情
如图,已知点P为△ABC所在平面外任一点点D、E、F分别在射线PA、PB、PC上并且
PD
PA
=
PE
PB
=
PF
PC
求证平面DEF∥平面ABC.
考点:平面与平面平行的判定
专题:证明题,空间位置关系与距离
分析:利用
PD
PA
=
PE
PB
,证明DE∥AB,利用线面平行的判定定理,可得DE∥平面ABC,同理EF∥平面ABC,即可证明平面DEF∥平面ABC.
解答: 证明:因为
PD
PA
=
PE
PB

所以DE∥AB.
又因为DE?平面ABC,
所以DE∥平面ABC.
同理EF∥平面ABC.
又因为DE∩EF=E,
所以,平面DEF∥平面ABC.
点评:本题考查平面与平面平行、考查线面平行的判定定理,证明DE∥平面ABC,EF∥平面ABC是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有a2m-1+a2n-1=2am+n-1+2(m-n)2
(1)求a3,a5
(2)设cn=(an+1-an) qn-1(q≠0,n∈N*),求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设双曲线
x2
4
-
y2
9
=1
,F1,F2是其两个焦点,点M在双曲线上.
(1)若∠F1MF2=
π
2
,求△F1MF2的面积;
(2)若∠F1MF2=
π
3
,求△F1MF2的面积是多少?若∠F1MF2=120°时,△F1MF2的面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2是椭圆
4x2
49
+
y2
6
=1的两个焦点,P是椭圆上的点,且|PF1|:|PF2|=4:3,则△PF1F2的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x、y、z均为正数.求证:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中数学 来源: 题型:

两个正数a,b的等差中项是
5
2
,一个等比中项是
6
,且a>b,则椭圆
x2
a2
+
y2
b2
=1的离心率e等于(  )
A、
13
3
B、
13
C、
5
3
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,三个内角A,B,C的对边分别为a,b,c,若asinA-csinC=(a-b)sinB,则角C为(  )
A、60°B、30°
C、120°D、150°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆Γ:
x2
4
+
y2
3
=1
,动直线l1:x=x1(-2<x<0),点A1,A2分别为
椭圆Γ的左、右顶点,l1与椭圆Γ相交于A,B两点(点A在第二象限).
(Ⅰ)求直线AA1与直线A2B交点M的轨迹方程;
(Ⅱ)设动直线l2:x=x2(-2<x<2,x1≠x2)与椭圆Γ相交于C,D两点,△OAB与△OCD的面积相等.证明:|OA|2+|OD|2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x=1是函数f(x)的图象的一条对称轴,对任意x∈R,f(x+2)=-f(x),当-1≤x≤1时,f(x)=x3,求f(x)在R上的解析式.

查看答案和解析>>

同步练习册答案