精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=x(ex+ae-x)(x∈R),若函数f(x)是偶函数,记a=m,若函数f(x)为奇函数,记a=n,则m+2n的值为(  )
A.0B.1C.2D.-1

分析 利用函数f(x)=x(ex+ae-x)是偶函数,得到g(x)=ex+ae-x为奇函数,然后利用g(0)=0,可以解得m.函数f(x)=x(ex+ae-x)是奇函数,所以g(x)=ex+ae-x为偶函数,可得n,即可得出结论.

解答 解:设g(x)=ex+ae-x,因为函数f(x)=x(ex+ae-x)是偶函数,所以g(x)=ex+ae-x为奇函数.
又因为函数f(x)的定义域为R,所以g(0)=0,
即g(0)=1+a=0,解得a=-1,所以m=-1.
因为函数f(x)=x(ex+ae-x)是奇函数,所以g(x)=ex+ae-x为偶函数
所以(e-x+aex)=ex+ae-x即(1-a)(e-x-ex)=0对任意的x都成立
所以a=1,所以n=1,
所以m+2n=1
故选:B.

点评 本题主要考查函数奇偶性的应用,特别是要掌握奇函数的一个性质,若奇函数f(x)过原点,则必有f(0)=0,要灵活使用奇函数的这一性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.用随机数法从100名学生(男生25人)中抽选20人,某男同学被抽到的几率为$\frac{1}{5}$(用分数填空)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设m,n是自然数,条件甲:m3+n3是偶数;条件乙:m-n是偶数,则甲是乙的(  )
A.充分不必要条件B.必要不充分条件
C.充分且必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知等比数列{an}满足2a1+a3=3a2,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若${b_n}={a_n}+{log_{\frac{1}{2}}}{a_n}$,Sn=b1+b2+…+bn,求使Sn-2n+1+47<0成立的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知p:|x-a|<4,q:-x2+5x-6>0,且q是p的充分而不必要条件,则a的取值范围为[-1,6].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,角A,B,C所对的边分别为a,b,c,且(a+b+c)(b+c-a)=bc,则A=(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若(3-2a)${\;}^{-\frac{2}{3}}$>a${\;}^{-\frac{2}{3}}$,则实数a的取值范围是(1,$\frac{3}{2}$)∪($\frac{3}{2}$,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设全集U=R,A={x∈R|a≤x≤3a-1},B={x∈R|3x2-8x+4≤0}.
(1)若a=1,求(∁UA)∩B;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.函数$y={log_2}(-{x^2}+4x+32)$的定义域为集合A,函数g(x)=2x-a,x∈(-∞,2)的值域为集合B
(1)求集合A、B;
(2)若集合A、B满足A∪B=A,求实数a的取值范围.

查看答案和解析>>

同步练习册答案