精英家教网 > 高中数学 > 题目详情
已知x>0,由不等式x+
1
x
≥2
x•
1
x
=2,x+
4
x2
=
x
2
+
x
2
+
4
x2
≥33
x
2
x
2
4
x2
 
=3…,启发我们可以得出推广结论:x+
a
xn
≥n+1(n∈N+)则a=
 
分析:先将x拆成n个
x
n
相加,再利用已知不等式的结论,类比得出a=nn
解答:解:由已知不等式可知
x
n
x
n
+
 …
x
n
+
a
xn
(n+1)
n
x
n
x
n
•…
x
n
a
xn
=n+1
,故a=nn,故答案为nn
点评:合情推理中的类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.其思维过程大致是:观察、比较 联想、类推 猜测新的结论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•临沂二模)已知x>0,由不等式x+
1
x
≥2
x•
1
x
=2,x+
4
x2
=
x
2
+
x
2
+
4
x2
≥3
3
x
2
x
2
4
x2
=3,…,可以推出结论:x+
a
xn
≥n+1(n∈N*),则a=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x>0,由不等式x+
1
x
≥2
x-
1
x
=2,x+
4
x2
=
x
2
+
x
2
+
x
x2
≥3
3
x
2
x
2
4
x2
=3,x+
27
x2
=
x
3
+
x
3
+
x
3
+
27
x2
≥4
4
x
3
x
3
x
3
27
x2
=4,….在x>0条件下,请根据上述不等式归纳出一个一般性的不等式
x+
nn
xn
≥n+1(n∈N﹡)
x+
nn
xn
≥n+1(n∈N﹡)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x>0,由不等式x+
1
x
>2
x2+
2
x
>3
x3+
3
x
>4
…可以推广为(  )
A、xn+
n
x
>n
B、xn+
n
x
>n+1
C、xn+
n+1
x
>n+1
D、xn+
n+1
x
>n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x>0,由不等式x+
1
x
≥2,x2+
2
x
=x2+
1
x
+
1
x
≥3,…
,启发我们可以得到推广结论:xn+
a
x
≥n+1(n∈N*)
,则a=
 

查看答案和解析>>

同步练习册答案