精英家教网 > 高中数学 > 题目详情
若函数f(x)=sinωx+acosωx(ω>0)的图象关于点M(
π
3
,0)
对称,且在x=
π
6
处函数有最小值,则a+ω的一个可能的取值是(  )
A、0B、3C、6D、9
分析:根据题意:相邻对称点与最小值之间可以相差
1
4
T,也可以是
3
4
T,不妨设为:
π
3
-
π
6
=(n+
3
4
) T
,则T=
3(4n+3)
,再由周期公式求得ω,然后由f(
π
3
)=0求和a,从而有a+ω求解.
解答:解:根据题意:
π
3
-
π
6
=(n+
3
4
) T

T=
3(4n+3)

所以ω=
T
=3(4n+3)

∵f(
π
3
)=0
∴sin(4n+3)π+acos(4n+3)π=-a,
∴a=0,
∴a+ω=3(4n+3).
∴ω可以为9
故选D
点评:本题主要考查正余弦函数的对称点,对称轴与周期间的关系,即相邻的对称轴及对称点之间相差半个周期等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=sin(3x+φ)的图象关于直线x=
3
对称,则φ的最小正值等于(  )
A、
π
8
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=sin(x+?)是偶函数,则?可取的一个值为                  (  )
A、?=-π
B、?=-
π
2
C、?=-
π
4
D、?=-
π
8

查看答案和解析>>

科目:高中数学 来源: 题型:

有以下四个命题:
①函数f(x)=sin(
π
3
-2x)的一个增区间是[
12
11π
12
];
②若函数f(x)=sin(ωx+φ)为奇函数,则φ为π的整数倍;
③对于函数f(x)=tan(2x+
π
3
),若f(x1)=f(x2),则x1-x2必是π的整数倍;
④函数y=2sin(2x+
π
3
)的图象关于点(
π
3
,0)对称.
其中正确的命题是
 
.(填上正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=sin(ωx+φ)(|φ|<
π
2
)的图象(部分)如图所示,则f(x)的解析式是
f(x)=sin(
1
2
x+
π
6
f(x)=sin(
1
2
x+
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=sin(ωx+
π
4
)的图象的相邻两条对称轴之间的距离等于
π
3
,则ω=
±3
±3

查看答案和解析>>

同步练习册答案