精英家教网 > 高中数学 > 题目详情

【题目】如图所示四棱锥PABCDAP平面PCDADBCABBCADEF分别为线段ADPC的中点.

(1)求证AP平面BEF

(2)求证BE平面PAC.

【答案】 (1) 证明见解析

(2) 证明见解析

【解析】

(1)连接CE,OF,易知四边形ABCE是菱形,可得OAC的中点,利用中位线的概念,可得PA∥OF,从而可证AP∥平面BEF;

(2)通过证明APBE、BE⊥AC,可证明BE⊥平面PAC

证明: (1)如图所示,设ACBEO,连接OFEC.

由于EAD的中点,ABBCADADBC

所以AEBCAEABBC因此,四边形ABCE为菱形,

所以OAC的中点.FPC的中点,

所以在PAC中,可得APOF.

OF平面BEFAP平面BEF

所以AP平面BEF.

(2)由题意,知EDBCEDBC

所以四边形BCDE为平行四边形,所以BECD.

AP平面PCD,所以APCD,所以APBE.

因为四边形ABCE为菱形,所以BEAC.

APACAAPAC平面PAC

所以BE平面PAC

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的极值;

(2)当时,若对任意都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆.

1)若点都为圆上的动点,且,求弦中点所形成的曲线的方程;

2)若直线过点,且被(1)中曲线截得的弦长为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为推行“新课堂”教学法,某老师在甲乙两个班分别用传统教学和“新课堂”两种不同的教学方式进行教学实验.为了解教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出的茎叶图(如下图所示),记成绩不低于70分者为“成绩优良”.

1)分别计算甲乙两班20个样本中,分数前十的平均分,并据此判断哪种教学方式的教学效果更佳;

2)甲乙两班40个样本中,成绩在60分以下的学生中任意选取2人,求这2人来自不同班级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥SABCD的底面是正方形,SD⊥平面ABCD,SDADa,ESD上的点,且DEa(0<≦1). w.w.w..c.o.m

(Ⅰ)求证:对任意的01),都有AC⊥BE:

(Ⅱ)若二面角C-AE-D的大小为600C,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点CtRt0)为圆心的圆与x轴交于点O和点A,与y轴交于点O和点B,其中O为原点.

1)求证:OAB的面积为定值;

2)设直线y=-2x4与圆C交于点MN,若OMON,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)判断函数的零点的个数并说明理由;

2)求函数零点所在的一个区间,使这个区间的长度不超过

3)若,对于任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为弘扬中华传统文化,学校课外阅读兴趣小组进行每日一小时的“经典名著”和“古诗词”的阅读活动. 根据调查,小明同学阅读两类读物的阅读量统计如下:

小明阅读“经典名著”的阅读量(单位:字)与时间t(单位:分钟)满足二次函数关系,部分数据如下表所示;

t

0

10

20

30

0

2700

5200

7500

阅读“古诗词”的阅读量(单位:字)与时间t(单位:分钟)满足如图1所示的关系.

1)请分别写出函数的解析式;

2)在每天的一小时课外阅读活动中,小明如何分配“经典名著”和“古诗词”的阅读时间,使每天的阅读量最大,最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是平行四边形,.

1)求证:平面平面

2)求直线与平面所成角的正弦值.

3)求二面角的正弦值.

查看答案和解析>>

同步练习册答案