精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱椎中,侧棱底面分别是线段的中点,过线段的中点的平行线,分别交于点.

1)证明:平面

2)求二面角的余弦值.

【答案】1)证明略;(2

【解析】

试题(1)要证线面垂直,就要证线线垂直,即要证与平面内两条相交直线垂直,首先由三棱柱侧棱与底面垂直可得,由等腰三角形性质知,从而有,因此即证线面垂直;(2)要求二面角,关键是作出二面角的平面角,一般要找到二面角的一个面的垂线,则平面角易作,因此我们连接,作,由(1)可证平面,根据三垂线定理可得所求二面角的平面角,并在相应直角三角形中可求得此角大小.

试题解析:(1)因为ABACDBC的中点,

所以BCAD.

由题可知MNBC

所以MNAD.

因为AA1⊥平面ABCMN平面ABC

所以AA1MN.

ADAA1在平面ADD1A1内,且ADAA1相交于点A

所以MN⊥平面ADD1A1.

(2)解 如图,连结A1P,过点AAEA1P于点E,过点EEFA1M于点F,连结AF.

(1)知,MN⊥平面AEA1

所以平面AEA1⊥平面A1MN.

因为平面AEA1平面A1MNA1PAEA1PAE平面AEA1

所以AE⊥平面A1MN,则A1MAE,又AEEFE

所以A1M⊥平面AEF,则A1MAF

故∠AFE为二面角AA1MN的平面角(设为θ)

AA11,则由ABAC2AA1,∠BAC120°

DBC的中点,有∠BAD60°AB2AD1.

PAD的中点,MAB的中点,

所以APAM1.

RtAA1P中,A1P

RtA1AM中,A1M

从而AE

AF

所以sinθ.

因为∠AFE为锐角,

所以.

故二面角AA1MN的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱的各条棱长均相等, 的中点, 分别是线段和线段上的动点(含端点),且满足.当运动时,下列结论中不正确的是( )

A. 平面平面 B. 三棱锥的体积为定值

C. 可能为直角三角形 D. 平面与平面所成的锐二面角范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为也为抛物线的焦点,点在第一象限的交点,且.

(I)求椭圆的方程;

(II)延长,交椭圆于点,交抛物线于点,求三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:

(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;

(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:

箱产量<50 kg

箱产量≥50 kg

旧养殖法

新养殖法

(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.

图1 图2

(1)记“在年成交的二手车中随机选取一辆,该车的使用年限在”为事件试估计的概率;

(2)根据该汽车交易市场的历史资料,得到散点图如图2,其中(单位:年)表示二手车的使用时间,(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用作为二手车平均交易价格关于其使用年限的回归方程,相关数据如下表(表中):

5.5

8.7

1.9

301.4

79.75

385

①根据回归方程类型及表中数据,建立关于的回归方程;

②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.

附注:①对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

②参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学专著《九章算术》中有一个“两鼠穿墙题”,其内容为:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.问何日相逢?各穿几何?”如图的程序框图源于这个题目,执行该程序框图,若输入x=20,则输出的结果为(  )

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为 (φ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心为(2,),半径为1的圆.

(1)求曲线C1的普通方程和C2的直角坐标方程;

(2)设M为曲线C1上的点,N为曲线C2上的点,求|MN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线与直线交于不同两点分别过点、点作抛物线的切线,所得的两条切线相交于点.

(Ⅰ)求证为定值:

(Ⅱ)求的面积的最小值及此时的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“微信运动”是手机推出的多款健康运动软件中的一款,某学校140名老师均在微信好友群中参与了“微信运动”,对运动10000步或以上的老师授予“运动达人”称号,低于10000步称为“参与者”,为了解老师们运动情况,选取了老师们在4月28日的运动数据进行分析,统计结果如下:

运动达人

参与者

合计

男教师

60

20

80

女教师

40

20

60

合计

100

40

140

(1)根据上表说明,能否在犯错误概率不超过0.05的前提下认为获得“运动达人”称号与性别有关?

(2)从具有“运动达人”称号的教师中,采用按性别分层抽样的方法选取10人参加全国第四届“万步有约”全国健走激励大赛某赛区的活动,若从选取的10人中随机抽取3人作为代表参加开幕式,设抽取的3人中女教师人数为,写出的分布列并求出数学期望.

参考公式:,其中.

参考数据:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案