精英家教网 > 高中数学 > 题目详情

【题目】如图所示,已知四棱锥的底面为矩形, 底面,且), 分别是 的中点.

(1)当为何值时,平面平面?并证明你的结论;

(2)当异面直线所成角的正切值为2时,求三棱锥的体积.

【答案】(1)见解析(2)

【解析】试题分析:(1)先利用分析法确定值,再利用综合法证明:取的中点,根据平几知识得四边形是平行四边形,即得.由条件得平面,因此平面.即得平面平面.(2)因为,所以即为异面直线所成的角,根据异面直线所成角的正切值为2,解得,最后根据三棱锥体积公式求体积.

试题解析:解:(1)当时,平面平面

的中点,连接

分别是 的中点,

又∵ 的中点,

,∴

∴四边形是平行四边形,

.①

,∴

平面,∴

,∴平面

,∴平面.②

由①②,得平面.

平面

∴平面平面.

(2)∵

即为异面直线所成的角,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖一次.抽奖方法是:从装有标号为个红球和标号为个白球的箱中,随机摸出个球,若摸出的两球号码相同,可获一等奖;若两球颜色不同且号码相邻,可获二等奖,其余情况获三等奖.已知某顾客参与抽奖一次.

Ⅰ)求该顾客获一等奖的概率;

Ⅱ)求该顾客获三获奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·全国Ⅱ卷)如图,四棱锥PABCD中,侧面PAD为等边三角形且垂直于底面ABCDABBCADBADABC90°EPD的中点.

(1)证明:直线CE∥平面PAB

(2)M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角MABD的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线l1l2是异面直线,l1αl2βα∩β=l,则下列命题正确的是(  )

A. l至少与中的一条相交B. l都相交

C. l至多与中的一条相交D. l都不相交

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,DEF分别是边中点,下列说法正确的是(

A.

B.

C.,则的投影向量

D.若点P是线段上的动点,且满足,则的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),其中为自然对数的底数.

(1)讨论函数的单调性;

(2)已知 为整数,若对任意,都有恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,根据条件,判断的形状.

1

2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 是函数的导函数,则的图象大致是( )

A. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/8f50d3dfba9b485fac00e42a95909498.png] B. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/74ae44978a70424c961e850ed79072da.png]

C. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/2f113f7ec5294ba0bbd1f66b13f3e152.png] D. [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395356672/STEM/dbaa9025ccdb497380b769e5396c4c19.png]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了监控某种零件的一条生产线的生产过程检验员每天从该生产线上随机抽取16个零件并测量其尺寸(单位:cm).根据长期生产经验可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μσ2).

(1)假设生产状态正常X表示一天内抽取的16个零件中其尺寸在(μ-3σμ+3σ)之外的零件数P(X1)X的数学期望;

(2)一天内抽检零件中如果出现了尺寸在(μ-3σμ+3σ)之外的零件就认为这条生产线在这一天的生产过程可能出现了异常情况需对当天的生产过程进行检查.

①试说明上述监控生产过程方法的合理性;

②下面是检验员在一天内抽取的16个零件的尺寸:

经计算得==9.97s==≈0.212其中xi为抽取的第i个零件的尺寸i=1,2,,16.

用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值利用估计值判断是否需对当天的生产过程进行检查?剔除﹣3+3之外的数据用剩下的数据估计μσ(精确到0.01).

附:若随机变量Z服从正态分布N(μσ2),P(μ-3σ<Z<μ+3σ)=0.997 4.0.997 4160.959 2,0.09.

查看答案和解析>>

同步练习册答案