精英家教网 > 高中数学 > 题目详情
11.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>0,则不等式(x+2016)2f(x+2016)-4f(-2)<0的解集为(  )
A.(-∞,-2016)B.(-2018,-2016)C.(-2016,-2)D.(-2,0)

分析 根据条件,构造函数,利用函数的单调性和导数之间的关系,将不等式进行转化即可得到结论.

解答 解:构造函数g(x)=x2f(x),g′(x)=x(2f(x)+xf′(x));
x<0时,∵2f(x)+xf′(x)>0,
∴g′(x)<0,
∴g(x)在(-∞,0)上单调递减,
∵(x+2016)2f(x+2016)-4f(-2)<0,
∴(x+2016)2f(x+2016)<4f(-2),
∴g(x+2016)<g(-2),
∴$\left\{\begin{array}{l}{x+2016<0}\\{x+2016>-2}\end{array}\right.$,
解得:-2018<x<-2016,
故选:B.

点评 本题主要考查不等式的解法,利用条件构造函数,利用函数单调性和导数之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{5}}{3}$,左顶点、上顶点分别为A,B,△OAB的面积为3(点O为坐标原点).
(1)求椭圆C的方程;
(2)若P、Q分别是AB、椭圆C上的动点,且$\overrightarrow{OP}$=λ$\overrightarrow{OQ}$(λ<0),求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)的定义域为D,若对于?a,b,c∈D,f(a),f(b),f(c)分别为某个三角形的边长,则称f(x)为“三角形函数”.给出下列四个函数:
①f(x)=lnx(e2≤x≤e3);②f(x)=4-cosx;③$f(x)={x^{\frac{1}{2}}}(1<x<4)$;④$f(x)=\frac{e^x}{{{e^x}+1}}$.
其中为“三角形函数”的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数$f(x)=\left\{\begin{array}{l}\frac{1}{4}x+1,\;x≤1\\ lnx,x>1\end{array}\right.$,
①方程f(x)=-x有1个根;
②若方程f(x)=ax恰有两个不同实数根,则实数a的取值范围是$[\frac{1}{4},\frac{1}{e})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数y=f(x)(x∈R)满足f(x+1)=f(x-1)且x∈[-1,1]时,f(x)=1-x2,函数g(x)=$\left\{\begin{array}{l}{lgx,x>0}\\{-\frac{1}{x},x<0}\end{array}\right.$,则实数h(x)=f(x)-g(x)在区间[-5,5]内零点的个数为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}\right.$(α为参数),在以原点为极点,X轴正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$.
(1)求C的普通方程和l的倾斜角;
(2)若l和C交于A,B两点,且Q(2,3),求|QA|+|QB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x+$\frac{1}{|x|}$.
(1)求解不等式f(x)≥2x;
(2)$\frac{1}{{x}^{2}}$+x2+2mf(x)≥0在x∈[1,2]上恒成立,求m的取值范围;
(3)设函数g(x)=x2+(-3+c)x+c2,若方程g(f(x))=0有6个实根,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个圆锥的表面积为6π(单位:m2),且它的侧面展开图是一个半圆,则圆锥的底面半径为(  )(单位:m)
A.$\frac{1}{2}$B.$\sqrt{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}满足a1=3,a5=15,数列{bn}满足b1=4,b5=31,设正项等比数列{cn}满足cn=bn-an
(1)求数列{an}和{cn}的通项公式;
(2)求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案