精英家教网 > 高中数学 > 题目详情
3.已知某几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体得体积是(  )cm2
A.$\frac{4}{3}$B.$\frac{8}{3}$C.2D.4

分析 由已知中的三视图,可知该几何体是一个以俯视图为底面的四棱锥,求出底面面积和高,代入锥体体积公式,可得答案.

解答 解:由已知中的三视图,可知该几何体是一个以俯视图为底面的四棱锥,
其底面面积S=2×2=4,
高h=2,
故几何体的体积V=$\frac{1}{3}$Sh=$\frac{8}{3}$,
故选:B.

点评 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.将函数y=sin2x的图象向右平移$\frac{π}{4}$个单位,再向上平移一个单位,所得函数图象对应的解析式为(  )
A.y=2sin2xB.y=2cos2xC.y=sin(2x-$\frac{π}{4}$)+1D.y=-cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在正三棱柱中,E是AC中点,求证:AB′∥面BEC′.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知n=3!+24!,则n的个位数为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.规定$A_x^m=x(x-1)…(x-m+1)$,其中x∈R,m为正整数,且$A_x^0$=1,这是排列数A${\;}_{n}^{m}$(n,m是正整数,n≤m)的一种推广.
(Ⅰ) 求A${\;}_{-9}^{3}$的值;
(Ⅱ)排列数的性质:A${\;}_{n}^{m}$+mA${\;}_{n}^{m-1}$=A${\;}_{n+1}^{m}$(其中m,n是正整数).是否都能推广到A${\;}_{x}^{m}$(x∈R,m是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由;
(Ⅲ)已知函数f(x)=A${\;}_{x}^{3}$-4lnx-m,试讨论函数f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知cosα=-$\frac{3}{5}$,且α∈(-π,0),则tanα=(  )
A.-$\frac{4}{3}$B.$\frac{4}{3}$C.-$\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=sinax+$\frac{1}{2}$与函数y=(a-1)x2+x在同一坐标系内的图象不可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=$\frac{1}{6}$ax3+($\frac{a}{2}$-2)x2,g(x)=mlnx,其中a≠0.
(1)若函数y=g(x)的图象恒过定点P,且点P在函数y=f(x)的图象上,求函数y=f(x)在点P处的切线方程;
(2)当m=4时,设F(x)=f′(x)-g(x)(其中f′(x)是f(x)的导函数),试讨论F(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.向边长为2的正方形中随机撒一粒豆子,则豆子落在正方形的内切圆的概率是(  )
A.$\frac{1}{2}$B.$\frac{π}{2}$C.$\frac{4}{π}$D.$\frac{π}{4}$

查看答案和解析>>

同步练习册答案