精英家教网 > 高中数学 > 题目详情

由函数确定数列,函数的反函数能确定数列,若对于任意,都有,则称数列是数列的“自反数列”。

(1)若函数确定数列的自反数列为,求的通项公式;

(2)在(1)条件下,记为正数数列的调和平均数,若

为数列的前项和,为数列的调和平均数,求

(3)已知正数数列的前项之和。求的表达式。

解  (1) 由题意的:f –1(x)== f(x)=,所以p = –1,所以an=

(2)  an=dn==n

Sn为数列{dn}的前n项和,Sn=,又Hn为数列{Sn}的调和平均数,

Hn===   ==

(3) 因为正数数列{cn}的前n项之和Tn=(cn+),

所以c1=(c1+),解之得:c1=1,T1=1

n≥2时,cn = TnTn–1,所以2Tn = TnTn–1 +

Tn +Tn–1 = ,即:= n

所以,= n–1,= n–2,……,=2,累加得:

=2+3+4+……+ n,      =1+2+3+4+……+ n =Tn=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f-1(x)能确定数列bn,bn=f-1(n)若对于任意n∈N*都有bn=an,则称数列{bn}是数列{an}的“自反函数列”
(1)设函数f(x)=
px+1
x+1
,若由函数f(x)确定的数列{an}的自反数列为{bn},求an
(2)已知正整数列{cn}的前项和sn=
1
2
(cn+
n
cn
).写出Sn表达式,并证明你的结论;
(3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=
-1
anSn2
,Dn是数列{dn}的前n项和,且Dn>loga(1-2a)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年长郡中学一模文)(13分)

由函数确定数列,函数的反函数能确定数列,若对于任意都有,则称数列是数列的“自反函数列”.

(I)设函数,若由函数确定的数列的自反数列为,求

(Ⅱ)已知正数数列的前n项和,写出表达式,并证明你的结论;

(Ⅲ)在(I)和(Ⅱ)的条件下,,当时,设是数列的前项和,且恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年上海市黄浦区大境中学高三5月模拟数学试卷(理科)(解析版) 题型:解答题

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f-1(x)能确定数列bn,bn=f-1(n)若对于任意n∈N*都有bn=an,则称数列{bn}是数列{an}的“自反函数列”
(1)设函数f(x)=,若由函数f(x)确定的数列{an}的自反数列为{bn},求an
(2)已知正整数列{cn}的前项和sn=(cn+).写出Sn表达式,并证明你的结论;
(3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=,Dn是数列{dn}的前n项和,且Dn>loga(1-2a)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年湖北省黄石二中高考数学模拟试卷(文科)(解析版) 题型:解答题

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f-1(x)能确定数列bn,bn=f-1(n)若对于任意n∈N*都有bn=an,则称数列{bn}是数列{an}的“自反函数列”
(1)设函数f(x)=,若由函数f(x)确定的数列{an}的自反数列为{bn},求an
(2)已知正整数列{cn}的前项和sn=(cn+).写出Sn表达式,并证明你的结论;
(3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=,Dn是数列{dn}的前n项和,且Dn>loga(1-2a)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009年北京市宣武区高考数学一模试卷(文科)(解析版) 题型:解答题

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f-1(x)能确定数列bn,bn=f-1(n)若对于任意n∈N*都有bn=an,则称数列{bn}是数列{an}的“自反函数列”
(1)设函数f(x)=,若由函数f(x)确定的数列{an}的自反数列为{bn},求an
(2)已知正整数列{cn}的前项和sn=(cn+).写出Sn表达式,并证明你的结论;
(3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=,Dn是数列{dn}的前n项和,且Dn>loga(1-2a)恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案