(本小题满分13分)如图,已知三棱柱的所有棱长都相等,且侧棱垂直于底面,由沿棱柱侧面经过棱到点的最短路线长为,设这条最短路线与的交点为.
(1)求三棱柱的体积;
(2)在面内是否存在过的直线与面平行?证明你的判断;
(3)证明:平面⊥平面.
平面A1BD内存在过点D的直线与平面ABC平行.
【解析】解:(1)如图,将侧面BB1C1C绕棱CC1旋转120°,
使其与侧面AA1C1C在同一平面上,点B运动到
点B2的位置,连接A1B2,则A1B2就是由点B沿
棱柱侧面经过棱CC1到点A1的最短路线.
设棱柱的棱长为,则B2C=AC=AA1=,
∵CD∥AA1 , ∴为的中点. ………2分
在Rt△A1AB2中,由勾股定理得,
即 ,解得, ∵,
∴. ………5分
(2)设A1B与AB1的交点为O,连结BB2,OD,则.
∵平面,平面, ∴平面,
即在平面A1BD内存在过点D的直线与平面ABC平行. ………9分
(3)连结AD,B1D ∵≌≌≌,
∴, ∴.
∵ ,,
∴平面A1ABB1 ,又∵平面A1BD.
∴平面A1BD⊥平面A1ABB1 . ………13分
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数.
(1)求函数的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数在区间上的图象.
(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱的所有棱长都为2,为的中点。
(Ⅰ)求证:∥平面;
(Ⅱ)求异面直线与所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知为锐角,且,函数,数列{}的首项.
(1) 求函数的表达式;
(2)在中,若A=2,,BC=2,求的面积
(3) 求数列的前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com