已知圆和圆.
(1)判断圆和圆的位置关系;
(2)过圆的圆心作圆的切线,求切线的方程;
(3)过圆的圆心作动直线交圆于A,B两点.试问:在以AB为直径的所有圆中,是否存在这样的圆,使得圆经过点?若存在,求出圆的方程;若不存在,请说明理由.
(1)外离;
(2)或;
(3)存在圆:或,使得圆经过点 。
解析试题分析:(1)求出两圆的圆心距,在比较其与 的大小关系,从而确定两圆的位置关系;(2)由点
斜式设出切线方程,然后用点线距离公式建立关于的方程;(2)斜率不存在时,易知圆也是满足题意的圆;斜率存在时,假设存在以为直径的圆经过点,则,所以,则可得,再把直线方程与圆的方程联立可求,,代入上式可得关于的方程。
(1)因为圆的圆心,半径,圆的圆心,半径,
所以圆和圆的圆心距,
所以圆与圆外离. 3分
(2)设切线的方程为:,即,
所以到的距离,解得.
所以切线的方程为或. ....7分
(3)ⅰ)当直线的斜率不存在时,直线经过圆的圆心,此时直线与圆的交点为,,即为圆的直径,而点在圆上,即圆也是满足题意的圆........8分
ⅱ)当直线的斜率存在时,设直线,由,
消去整理,得,
由△,得或.
设,则有 ① 9分
由①得, ②
, ③
若存在以为直径的圆经过点,则,所以,
因此,即, 10分
则,所以,,满足题意.
此时以
科目:高中数学 来源: 题型:解答题
已知圆C过点P(1,1),且与圆M:(x+2)2+(x+2)2=r2(r>0)2关于直线x+y+2=0对称.
⑴求圆C的方程;
⑵设Q为圆C上的一个动点,求的最小值;
⑶过点P作两条相异直线分别与圆C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆C的方程为,过点M(2,4)作圆C的两条切线,切点分别为A,B,
直线AB恰好经过椭圆T:(a>b>0)的右顶点和上顶点.
(1)求椭圆T的方程;
(2)已知直线l:y=kx+(k>0)与椭圆T相交于P,Q两点,O为坐标原点,
求△OPQ面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4.
(1)求直线CD的方程;
(2)求圆P的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆:与轴相切,点为圆心.
(1)求的值;
(2)求圆在轴上截得的弦长;
(3)若点是直线上的动点,过点作直线与圆相切,为切点.求四边形面积的最小值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com