精英家教网 > 高中数学 > 题目详情

已知圆和圆
(1)判断圆和圆的位置关系;
(2)过圆的圆心作圆的切线,求切线的方程;
(3)过圆的圆心作动直线交圆于A,B两点.试问:在以AB为直径的所有圆中,是否存在这样的圆,使得圆经过点?若存在,求出圆的方程;若不存在,请说明理由.

(1)外离;
(2)
(3)存在圆,使得圆经过点 。

解析试题分析:(1)求出两圆的圆心距,在比较其与 的大小关系,从而确定两圆的位置关系;(2)由点               
斜式设出切线方程,然后用点线距离公式建立关于的方程;(2)斜率不存在时,易知圆也是满足题意的圆;斜率存在时,假设存在以为直径的圆经过点,则,所以,则可得,再把直线方程与圆的方程联立可求,代入上式可得关于的方程。
(1)因为圆的圆心,半径,圆的圆心,半径
所以圆和圆的圆心距
所以圆与圆外离.                      3分
(2)设切线的方程为:,即
所以的距离,解得.
所以切线的方程为. ....7分
(3)ⅰ)当直线的斜率不存在时,直线经过圆的圆心,此时直线与圆的交点为即为圆的直径,而点在圆上,即圆也是满足题意的圆........8分
ⅱ)当直线的斜率存在时,设直线,由
消去整理,得
由△,得
,则有  ①    9分
由①得,  ②
,   ③
若存在以为直径的圆经过点,则,所以
因此,即,   10分
,所以,满足题意.
此时以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆心为的圆经过点(0,),(1,),且圆心在直线 上,求圆心为的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C过点P(1,1),且与圆M:(x+2)2+(x+2)2=r2(r>0)2关于直线x+y+2=0对称.
⑴求圆C的方程;
⑵设Q为圆C上的一个动点,求的最小值;
⑶过点P作两条相异直线分别与圆C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C的方程为,过点M(2,4)作圆C的两条切线,切点分别为A,B,
直线AB恰好经过椭圆T:(a>b>0)的右顶点和上顶点.
(1)求椭圆T的方程;
(2)已知直线l:y=kx+(k>0)与椭圆T相交于P,Q两点,O为坐标原点,
求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4.
(1)求直线CD的方程;
(2)求圆P的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆:轴相切,点为圆心.
(1)求的值;
(2)求圆轴上截得的弦长;
(3)若点是直线上的动点,过点作直线与圆相切,为切点.求四边形面积的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l:x-2y=0的距离为,求该圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知圆C的圆心是直线与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为        

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知直线与圆,则上各点到的距离的最小值为_____________。

查看答案和解析>>

同步练习册答案