精英家教网 > 高中数学 > 题目详情
1.已知点A(2,3)与点B(6,y)的距离等于4$\sqrt{5}$,则y的值是(  )
A.11或5B.-5或-11C.11D.11或-5

分析 将A,B两点代入两点之间距离公式,构造关于y的方程,解得答案.

解答 解:∵点A(2,3)与点B(6,y)的距离等于4$\sqrt{5}$,
∴$\sqrt{(2-6)^{2}+(3-y)^{2}}=4\sqrt{5}$,
∴(2-6)2+(3-y)2=80,
∴(3-y)2=64,
解得:y=-5,或y=11,
故选:D

点评 本题考查的知识点是两点间距离公式的应用,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若函数f(x)=aln(x+$\sqrt{{x^2}+1}$)+$\frac{b}{{{2^x}-1}}$+$\frac{b+6}{2}$(a,b为常数),在(0,+∞)上有最小值4,则函数f(x)在(-∞,0)上有(  )
A.最大值4B.最小值-4C.最大值2D.最小值-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.观察式子:
cos$\frac{2}{3}$π=-$\frac{1}{2}$;
cos$\frac{2}{5}$π+cos$\frac{4}{5}$π=-$\frac{1}{2}$;
cos$\frac{2}{7}$π+cos$\frac{4}{7}$π+cos$\frac{6}{7}$π=-$\frac{1}{2}$;
按此规律猜想第五个的等式为cos$\frac{2}{11}$π+cos$\frac{4}{11}$π+cos$\frac{6}{11}$π+cos$\frac{8}{11}$π+cos$\frac{10}{11}$π=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,在边长为4的正方形ABCD的边上有一点P,当P点由点B(起点)向点A(终点)沿逆时针方向移动(B→C→D→A)时,三点A、B、P构成△ABP,求:
(1)△ABP的面积y关于点P移动的路程x的函数关系式;
(2)当路程x为多少时面积y有最大值?并求此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{x+b}{1+{x}^{2}}$是定义在(-1,1)上的奇函数.
(1)求函数f(x)的解析式;
(2)用单调性的定义证明函数f(x)在(-1,1)上是增函数;
(3)解不等式f(2x-1)+f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=sinx•cos(x-$\frac{π}{6}$)+cos2x-$\frac{1}{2}$.
(1)求函数f(x)的最大值,并写出f(x)取最大值x时的取值集合;
(2)求函数f(x)在[一$\frac{π}{4}$,$\frac{π}{3}$]上的减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设有一颗彗星,围绕地球沿一抛物线轨道运行,地球恰好位于这条抛物线的焦点处,当此彗星离地球为d万千米时,经过地球和彗星的直线与抛物线的轴的夹角为30°,求这颗彗星与地球的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知A(-1,3),B(1,1),C(x,y).
(1)若A,B,C三点共线,求x与y的关系式;
(2)若$\overrightarrow{AC}$=2$\overrightarrow{AB}$,求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知在等比数列{an}中,a3=12,a6=324,则a4=36.

查看答案和解析>>

同步练习册答案