精英家教网 > 高中数学 > 题目详情
10.观察下列各式:
1+$\frac{1}{1+2}$=$\frac{4}{3}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$=$\frac{3}{2}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+$\frac{1}{1+2+3+4}$=$\frac{8}{5}$,…,则1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…+$\frac{1}{1+2+…+9}$等于(  )
A.$\frac{17}{9}$B.$\frac{19}{10}$C.$\frac{9}{5}$D.$\frac{11}{6}$

分析 观察下列各式,右边分母组成以3为首项,1为公差的等差数列;分子组成以4为首项,2为公差的等差数列,即可得出结论.

解答 解:1+$\frac{1}{1+2}$=$\frac{4}{3}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$=$\frac{3}{2}$=$\frac{6}{4}$,1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+$\frac{1}{1+2+3+4}$=$\frac{8}{5}$,…,
∴1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…+$\frac{1}{1+2+…+9}$=$\frac{18}{10}$=$\frac{9}{5}$.
故选:C.

点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.分别抛掷两枚质地均匀的硬币,设“第1枚为正面”为事件A,“第2枚为正面”为事件B,“2枚结果相同”为事件C,则A,B,C中相互独立的有(  )
A.0对B.1对C.2对D.3对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.将椭圆x2+$\frac{y^2}{4}$=1上每一点的横坐标不变纵坐标变为原来的$\frac{1}{2}$,得到曲线C.
(1)写出曲线C的参数方程;
(2)设点D在曲线C上,C在D处的切线与直线l:y=x+2垂直,求D的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面,平面ABCD∩平面ABPE=AB,且AB=BP=2,AD=AE=1,AE⊥AB,且AE∥BP.
(Ⅰ)设点M为棱PD中点,求证:EM∥平面ABCD;
(Ⅱ)线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于$\frac{2}{5}$?若存在,试确定点N的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=loga(x2-ax+2)在区间[0,1]上是单调减函数,则实数a的取值范围是(  )
A.[2,+∞)B.(0,1)C.[2,3)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某同学在一次研究性学习中发现,以下三个式子的值都等于同一个常数.
①sin210°+cos220°-sin10°cos20°;
②sin215°+cos215°-sin15°cos15°;
③sin216°+cos214°-sin16°cos14°;
请将该同学的发现推广为一般规律的等式为${sin^2}α+{cos^2}(30°-α)-sinαcos(30°-α)=\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设a、b为实数,求证:$\frac{\sqrt{1+{a}^{2}}+\sqrt{1+{b}^{2}}}{2}$≥$\sqrt{1+(\frac{a+b}{2})^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$,由f(1)=1>$\frac{1}{2}$,f(3)>1,f(7)>$\frac{3}{2}$,f(15)>2,…
(1)你能得到怎样的结论?并证明;
(2)是否存在正数T,使对任意的正整数n,有f(n)<T成立?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$\overrightarrow a$=(4,8),$\overrightarrow b$=(x,4),且$\overrightarrow a∥\overrightarrow b$,则x的值是(  )
A.2B.-8C.-2D.8

查看答案和解析>>

同步练习册答案