精英家教网 > 高中数学 > 题目详情

已知圆与y轴相切,圆心在直线x-3y=0,且这个圆经过点A(6,1),求该圆的方程.

(x-3)2+(y-1)2=9或(x-111)2+(y-37)2=1112

解析试题分析:因为圆心在x-3y=0上,所以设圆心坐标为(3m,m)且m>0,
根据圆与y轴相切得到半径为3m,
所以,圆的方程为(x-3m)2+(y-m)2=9m2,把A(6,1)代入圆的方程得:(6-3m)2+(1-m)2=9m2
化简得:m2-38m+37=0,则m=1或37,
所以,圆的方程为(x-3)2+(y-1)2=9或(x-111)2+(y-37)2=1112
考点:圆的方程
点评:中档题,用待定系数法求圆的方程,一般可通过已知条件,设出所求方程,再建立待定系数的方程组求解。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

31、已知圆与y轴相切,圆心在直线x-3y=0,且这个圆经过点A(6,1),求该圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•揭阳二模)如图已知抛物线C:y2=2px(p>0)的准线为l,焦点为F,圆M的圆心在x轴的正半轴上,且与y轴相切.过原点作倾斜角为
π
3
的直线t,交l于点A,交圆M于点B,且|AO|=|OB|=2.
(1)求圆M和抛物线C的方程;
(2)设G,H是抛物线C上异于原点O的两个不同点,且
OG
OH
=0
,求△GOH面积的最小值;
(3)在抛物线C上是否存在两点P,Q关于直线m:y=k(x-1)(k≠0)对称?若存在,求出直线m的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•揭阳二模)如图已知抛物线C:y2=2px(p>0)的准线为l,焦点为F,圆M的圆心在x轴的正半轴上,且与y轴相切.过原点作倾斜角为
π3
的直线t,交l于点A,交圆M于点B,且|AO|=|OB|=2.
(1)求圆M和抛物线C的方程;
(2)试探究抛物线C上是否存在两点P,Q关于直线m:y=k(x-1)(k≠0)对称?若存在,求出直线m的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:吉林省长春外国语学校2011-2012学年高二第二次月考数学试题 题型:044

已知圆与y轴相切,圆心在直线l1:x-3y=0上,且在直线l2:x-y=0上截得的弦长为,求该圆的方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012年吉林省高二上学期第二次月考数学 题型:解答题

(本小题满分14分)已知圆与y轴相切,圆心在直线: x-3y=0上,且在直线上截得的弦长为,求该圆的方程.

 

查看答案和解析>>

同步练习册答案