如图,矩形所在的平面和平面
互相垂直,等腰梯形
中,
∥
,
=2,
,
,
,
分别为
,
的中点,
为底面
的重心.
(1)求证:平面平面
;
(2)求证: ∥平面
;
(3)求多面体的体积
.
(1)见解析;(2)见解析;(3).
解析试题分析:(1)利用矩形所在的平面和平面
互相垂直,且
得到平面
,
;
应用余弦定理知,得到
;
由⊥平面
,得到平面
平面
;
(2)平行关系的证明问题问题,要注意三角形中位线定理的应用,注意平行关系的传递性,以及线线关系、线面关系、面面关系的相互转化; 8分
(3)将多面体的体积分成三棱锥
与
四棱锥的体积之和,分别加以计算.
试题解析:(1)矩形
所在的平面和平面
互相垂直,且
∴平面
,
又平面
,所以
1分
又,
,
,由余弦定理知
,
∴得
2分
∴
⊥平面
, 3分
平面
;∴平面
平面
; 4分
(2)连结延长交
于
,则
为
的中点,又
为
的中点,
∴∥
,又∵
平面
,∴
∥平面
5分
连结,则
∥
,
平面
科目:高中数学 来源: 题型:解答题
在边长为a的正三角形铁皮的三个角切去三个全等的四边形,再把它的边沿虚线折起(如图),做成一个无盖的正三角形底铁皮箱,当箱底边长为多少时,箱子容积最大?最大容积是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,直三棱柱ABCA1B1C1中,D,E分别是AB,BB1的中点.
(1)证明:BC1∥平面A1CD;
(2)设AA1=AC=CB=2,AB=2,求三棱锥C
A1DE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,AA1=AB=2,BC=3.
(1)求证:AB1∥平面BC1D;
(2)求四棱锥B-AA1C1D的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=
,AA1=3,D是BC的中点,点E在棱BB1上运动.
(1)证明:AD⊥C1E;
(2)当异面直线AC,C1E所成的角为60°时,求三棱锥C1A1B1E的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com