精英家教网 > 高中数学 > 题目详情
(2012•深圳一模)已知函数f(x)=x3+ax2+bx+c(实数a,b,c为常数)的图象过原点,且在x=1处的切线为直线y=-
12

(1)求函数f(x)的解析式;
(2)若常数m>0,求函数f(x)在区间[-m,m]上的最大值.
分析:(1)根据函数f(x)=x3+ax2+bx+c(a,b,c∈R)的图象过原点,可得f(0)=c=0.求导函数,利用在x=1处的切线为直线y=-
1
2
,即可求得函数f(x)的解析式;
(2)f(x)=x3-
3
2
x2,f′(x)=3x2-3x=3x(x-1),确定函数的单调性与极大值,将端点函数值与极大值比较,进行分类讨论,即可求得函数f(x)在区间[-m,m]上的最大值.
解答:解:(1)∵函数f(x)=x3+ax2+bx+c(a,b,c∈R)的图象过原点,
∴f(0)=c=0,
求导函数可得:f′(x)=3x2+2ax+b,
∵在x=1处的切线为直线y=-
1
2

∴f(1)=1+a+b=-
1
2
,f′(1)=3+2a+b=0,
∴a=-
3
2
,b=0,
∴f(x)=x3-
3
2
x2
(2)f(x)=x3-
3
2
x2,f′(x)=3x2-3x=3x(x-1),
令f′(x)>0,可得x<0或x>1;令f′(x)<0,可得0<x<1;
∴函数在(-∞,0),(1,+∞)上单调递增;在(0,1)上单调递减,
∴函数在x=0处取得极大值0,
令f(x)=x3-
3
2
x2=0,可得x=0或x=
3
2

∴0<m<
3
2
时,f(m)<0,函数在x=0处取得最大值0;
m≥
3
2
时,f(m)≥0,函数在x=m处取得最大值m3-
3
2
m2
点评:本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性与极值,解题的关键是明确函数的最值在极值处或端点处取得,注意数形结合思想的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•深圳一模)随机调查某社区80个人,以研究这一社区居民在20:00-22:00时间段的休闲方式与性别有关系,得到下面的数据表:
休闲方式
性别
看电视 看书 合计
10 50 60
10 10 20
合计 20 60 80
(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X,求X的分布列和期望;
(2)根据以上数据,能否有99%的把握认为“在20:00-22:00时间段的休闲方式与性别有关系”?
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
参考数据:
P(K2≥K0 0.15 0.10 0.05 0.025 0.010
K0 2.072 2.706 3.841 5.042 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知点P(x,y)在不等式组
x-2≤0
y-1≤0
x+2y-2≥0
表示的平面区域上运动,则z=x-y的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知等比数列{an}的第5项是二项式(
x
-
1
3x
)6
展开式的常数项,则a3a7=
25
9
25
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)如图,平行四边形ABCD中,AB⊥BD,AB=2,BD=
2
,沿BD将△BCD折起,使二面角A-BD-C是大小为锐角α的二面角,设C在平面ABD上的射影为O.

(1)当α为何值时,三棱锥C-OAD的体积最大?最大值为多少?
(2)当AD⊥BC时,求α的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知数列{an}满足:a1=
1
2
an+1=
an
enan+e
,n∈N*
(其中e为自然对数的底数).
(1)求数列{an}的通项an
(2)设Sn=a1+a2+…+an,Tn=a1•a2•a3•…•an,求证:Sn
n
n+1
Tne-n2

查看答案和解析>>

同步练习册答案