精英家教网 > 高中数学 > 题目详情

【题目】不等式2x2﹣x﹣3>0解集为(
A.{x|﹣1<x< }??
B.{x|x> 或x<﹣1}??
C.{x|﹣ <x<1}??
D.{x|x>1或x<﹣ }

【答案】B
【解析】解:不等式2x2﹣x﹣3>0因式分解为(x+1)(2x﹣3)>0 解得:x> 或x<﹣1.
∴不等式2x2﹣x﹣3>0的解集为{x|x> 或x<﹣1}
故选:B.
【考点精析】根据题目的已知条件,利用解一元二次不等式的相关知识可以得到问题的答案,需要掌握求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCD﹣A1B1C1D1中,底面是边长为 的正方形,AA1=3,点F在棱B1B上运动.

(1)若三棱锥B1﹣A1D1F的体积为 时,求异面直线AD与D1F所成的角
(2)求异面直线AC与D1F所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数学归纳法证明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12 时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是(
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)写出的普通方程和的直角坐标方程;

(2)设点上,点上,求的最小值及此时的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形,直角梯形,直角梯形所在平面两两垂直, ,且 .

1)求证: 四点共面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左顶点和上顶点分别为A、B,左、右焦点分别是F1 , F2 , 在线段AB上有且只有一个点P满足PF1⊥PF2 , 则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点C(t, )(t∈R,t≠0)为圆心的圆过原点O.
(1)设直线3x+y﹣4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程;
(2)在(1)的条件下,设B(0,2),且P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PQ|﹣|PB|的最大值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为常数, ,函数 (其中是自然对数的底数).

(1)过坐标原点作曲线的切线,设切点为,求证:

(2)令,若函数在区间上是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=10,an+1﹣an=n(n∈N*),则 取最小值时n=

查看答案和解析>>

同步练习册答案