精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,双曲线中心在原点,焦点在轴上,一条渐近线方程为
则它的离心率为(  )
A.B.C.D.
A

试题分析:因为双曲线中心在原点,焦点在轴上,一条渐近线方程为
所以,所以,即,所以,故离心率.
点评:本题考查双曲线的简单几何性质,根据渐近线方程导出a 与b的比值是正确求解的关键.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知平面内一动点到点的距离与点轴的距离的差等于1.(I)求动点的轨迹的方程;(II)过点作两条斜率存在且互相垂直的直线,设与轨迹相交于点与轨迹相交于点,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若双曲线与直线无交点,则离心率的取值范围( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,且它的离心率.直线
与椭圆交于两点.

(Ⅰ)求椭圆的标准方程;
(Ⅱ)当时,求证:两点的横坐标的平方和为定值;
(Ⅲ)若直线与圆相切,椭圆上一点满足,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,线段的两个端点分别分别在轴、轴上滑动,,点上一点,且,点随线段的运动而变化.

(1)求点的轨迹方程;
(2)设为点的轨迹的左焦点,为右焦点,过的直线交的轨迹于两点,求的最大值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

己知椭圆的离心率为是椭圆的左右顶点,是椭圆的上下顶点,四边形的面积为.
(1)求椭圆的方程;
(2)圆两点.当圆心与原点的距离最小时,求圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是椭圆的右焦点,定点A,M是椭圆上的动点,则的最小值为                 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆=1(a>b>0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.

(1)求椭圆和双曲线的标准方程;
(2)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1;
(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线与椭圆有相同的焦点,且该双曲线
的渐近线方程为
(1)求双曲线的标准方程;
(2) 过该双曲线的右焦点作斜率不为零的直线与此双曲线的左,右两支分别交于点
,当轴上的点满足时,求点的坐标.

查看答案和解析>>

同步练习册答案