精英家教网 > 高中数学 > 题目详情

【题目】已知圆的圆心轴上,半径为1,直线被圆所截的弦长为,且圆心在直线的下方.

(1)求圆的方程;

(2)设,若圆的内切圆,求的面积的最大值和最小值.

【答案】(1)(2)最大值为,最小值

【解析】试题分析:(1)由于圆的半径为,设圆心为,利用弦长为,则圆心到直线的距离为,以此建立方程,求得,所以圆的方程为;(2)设的斜率为的斜率为,由此写出直线的方程,联立求得点的横坐标, ,面积的表达式,利用圆与直线相切,求得,同理求得,代入面积的表达式,利用二次函数的图像与性质,求得最小值与最大值.

试题解析:

1)设圆心,由已知得的距离为

,又的下方,

故圆的方程为

2)由题设的斜率为的斜率为,则直线的方程为,直线的方程为

由方程组,得点的横坐标为

由于圆相切,所以

同理,

的面积的最大值为,最小值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的左焦点为,过点F做x轴的垂线交椭圆于A,B两点,且

(1)求椭圆C的标准方程:

(2)若M,N为椭圆上异于点A的两点,且直线的倾斜角互补,问直线MN的斜率是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 【2016高考新课标文数】已知抛物线的焦点为,平行于轴的两条直线分别交两点,交的准线于两点.

(I)若在线段上,的中点,证明

(II)若的面积是的面积的两倍,求中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2016高考四川文科】在平面直角坐标系中,当P(xy)不是原点时,定义P伴随点;当P是原点时,定义P伴随点为它自身,现有下列命题:

若点A的伴随点是点,则点伴随点是点A.

单元圆上的伴随点还在单位圆上.

若两点关于x轴对称,则他们的伴随点关于y轴对称

若三点在同一条直线上,则他们伴随点一定共线.

其中的真命题是 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2016高考天津文数】某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:

现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y计划表示生产甲、乙两种肥料的车皮数.

()用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;

()问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知圆和直线.

(Ⅰ)求的参数方程以及圆上距离直线最远的点坐标;

(Ⅱ)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,将圆上除点以外所有点绕着逆时针旋转得到曲线,求曲线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商店会员活动日.

(Ⅰ)随机抽取50名会员对商场进行综合评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…,[80,90),[90,100].

(1)求频率分布直方图中的值;

(2)估计会员对商场的评分不低于80的概率.

(Ⅱ)采取摸球兑奖的方式对会员进行返代金券活动,每位会员从一个装有5个标有面值的球(2个所标的面值为300元,其余3个均为100元)的袋中一次性随机摸出2个球,球上所标的面值之和为该会员所获的代金券金额.求某会员所获得奖励超过400元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等比数列中, ,且的等比中项为.

1)求数列的通项公式;

2)设,数列的前项和为,是否存在正整数,使得对任意恒成立?若存在,求出正整数的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4cosxsin(x+ )﹣1.
(1)求f(x)的最小正周期;
(2)若函数f(x)的定义域为 ,求单调递减区间和值域.

查看答案和解析>>

同步练习册答案