精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若曲线在点处的切线与直线垂直,求函数的单调区间;

(2)若对都有成立,试求实数的取值范围;

【答案】(1)的单调增区间是,单调减区间是;(2).

【解析】试题分析:(1)由导数几何意义得,求导数,列方程,解的值.再解导函数零点,列表分析导函数符号变化规律,确定函数单调区间;(2)不等式恒成立问题,一般转化为对应函数最值问题,即,利用导数确定函数最小值,最后解不等式即得实数的取值范围.

试题解析:(1)直线的斜率1.函数的定义域为

所以,解得.所以 .

解得;由解得

所以的单调增区间是,单调减区间是.

(2),由解得;由解得.

所以在区间上单调递增,在区间上单调递减,

所以当时,函数取得最小值,

因为对于都有成立,所以只须即可,

,解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)是偶函数,对于x∈R都有f(x+6)=f(x)+f(3)成立.当x1,x2∈[0,3],且x1≠x2时,都有 >0,给出下列命题:

① f(3)=0;

② 直线x=-6是函数y=f(x)的图象的一条对称轴;

③ 函数y=f(x)在[-9,-6]上为单调递减函数;

④ 函数y=f(x)在[-9,9]上有4个零点.

其中正确的命题是____________.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最小正周期为.

1求函数的单调增区间;

2将函数的图象向左平移个单位,再向上平移1个单位,得到函数的图象,若上至少含有10个零点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知|a|4|b|8ab的夹角是120°.

(1) 计算:① |ab|,② |4a2b|


(2) 当k为何值时,(a2b)⊥(kab)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(A)设函数 .

(1)证明:函数上为增函数;

(2)若方程有且只有两个不同的实数根,求实数的值.

(B)已知函数.

(1)求函数的最小值;

(2)若存在唯一实数,使得成立,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形垂直于正方形垂直于平面.且

(1)证明:面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设lm是两条不同的直线,α是一个平面,则下列命题正确的是( )

A. l⊥m,则l⊥α

B. l⊥αl∥m,则m⊥α

C. l∥α,则l∥m

D. l∥αm∥α,则l∥m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)当时,试比较的大小关系;

2)猜想的大小关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,其上下顶点分别为,.

(1)求椭圆的方程以及离心率

(2)的坐标为,过点的任意作直线与椭圆相交于两点,设直线的斜率依次成等差数列,探究之间是否存在某种数量关系,若是请给出的关系式,并证明;若不是,请说明理由.

查看答案和解析>>

同步练习册答案