精英家教网 > 高中数学 > 题目详情
1.已知函数y=$\sqrt{3}$sin(ωx+$\frac{π}{4}$)(ω>0).
(1)若ω=$\frac{π}{4}$,求函数的单调增区间和对称中心;
(2)函数的图象上有如图所示的A,B,C三点,且满足AB⊥BC.
①求ω的值;
②求函数在x∈[0,2)上的最大值,并求此时x的值.

分析 (1)ω=$\frac{π}{4}$时求出函数y的单调增区间和对称中心;
(2)①由图知B是函数图象的最高点,设出点B的坐标和最小正周期,表示出点A、C的坐标,利用坐标表示向量$\overrightarrow{AB}$、$\overrightarrow{BC}$,根据数量积求出T、ω的值;
②由x的取值范围求出函数y的最大值,计算对应的x值.

解答 解:(1)ω=$\frac{π}{4}$时,函数y=$\sqrt{3}$sin($\frac{π}{4}$x+$\frac{π}{4}$),
令-$\frac{π}{2}$+2kπ≤$\frac{π}{4}$x+$\frac{π}{4}$≤$\frac{π}{2}$+2kπ,k∈Z,
解得:-3+8k≤x≤1+8k,k∈Z,
∴函数y的单调增区间为[-3+8k,1+8k],(k∈Z);…(4分)
令$\frac{π}{4}$x+$\frac{π}{4}$=kπ,k∈Z,
解得x=-1+4k,k∈Z,
∴函数y的对称中心为(-1+4k,0),(k∈Z);…(8分)
(2)①由图知:点B是函数图象的最高点,设B(xB,$\sqrt{3}$),
设函数最小正周期为T,则A(xB-$\frac{T}{4}$,0),C(xB+$\frac{3T}{4}$,0);
∴$\overrightarrow{AB}$=($\frac{T}{4}$,$\sqrt{3}$),
$\overrightarrow{BC}$=($\frac{3T}{4}$,-$\sqrt{3}$),…(10分)
由$\overrightarrow{AB}$⊥$\overrightarrow{BC}$,得$\overrightarrow{AB}$•$\overrightarrow{BC}$=$\frac{3}{16}$T2-3=0,
解得:T=4,
∴ω=$\frac{2π}{4}$=$\frac{π}{2}$;…(12分)
②由x∈[0,2]得$\frac{π}{2}$x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{4}$],
∴sin($\frac{π}{2}$x+$\frac{π}{4}$)∈[-$\frac{\sqrt{2}}{2}$,1],
∴函数y在[0,2]上的最大值为$\sqrt{3}$,…(14分)
此时$\frac{π}{2}$x+$\frac{π}{4}$=$\frac{π}{2}$+2kπ,k∈Z,
则x=$\frac{1}{2}+$4k,k∈Z;
又x∈[0,2],∴x=$\frac{1}{2}$.…(16分)

点评 本题考查了三角函数的图象与性质的应用问题,也考查了数形结合以及平面向量的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知曲线C的参数方程是$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(α为参数)
(1)将C的参数方程化为普通方程;
(2)在直角坐标系xOy中,P(0,2),以原点O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为ρcosθ+$\sqrt{3}$ρsinθ+2$\sqrt{3}$=0,Q为C上的动点,求线段PQ的中点M到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知点$M(2,2\sqrt{6})$,点F为抛物线y2=2px(p>0)的焦点,点P是该抛物线上的一个动点.若|PF|+|PM|的最小值为5,则p的值为2或6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.数独游戏越来越受人们喜爱,今年某地区科技馆组织数独比赛,该区甲、乙、丙、丁四所学校的学生积极参赛,参赛学生的人数如表所示:
中学 甲 乙 丙 丁
人数 30 40 20 10
为了解参赛学生的数独水平,该科技馆采用分层抽样的方法从这四所中学的参赛学生中抽取30名参加问卷调查.
(Ⅰ)问甲、乙、丙、丁四所中学各抽取多少名学生?
(Ⅱ)从参加问卷调查的30名学生中随机抽取2名,求这2名学生来自同一所中学的概率;
(Ⅲ)在参加问卷调查的30名学生中,从来自甲、丙两所中学的学生中随机抽取2名,用X表示抽得甲中学的学生人数,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知二次函数f(x)对任意的x都有f(x+2)-f(x)=-4x+4,且f(0)=0.
(1)求函数f(x)的解析式;
(2)设函数g(x)=f(x)+m,(m∈R).
①若存在实数a,b(a<b),使得g(x)在区间[a,b]上为单调函数,且g(x)取值范围也为[a,b],求m的取值范围;
②若函数g(x)的零点都是函数h(x)=f(f(x))+m的零点,求h(x)的所有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知sinα=$\frac{1}{3}$,α为第二象限角,则cosα的值为(  )
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.$\frac{2\sqrt{2}}{3}$D.-$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(x-1)|x-a|-x-2a(x∈R).
(1)若a=-1,求方程f(x)=1的解集;
(2)若$a∈(-\frac{1}{2},0)$,试判断函数y=f(x)在R上的零点个数,并求此时y=f(x)所有零点之和的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知AB是圆C:x2+y2-4x+2y+a=0的一条弦,M(1,0)是弦AB的中点,若AB=3,则实数a的值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如果p是q的充分不必要条件,r是q的必要不充分条件;那么(  )
A.¬p?¬rB.¬p⇒¬rC.¬p?¬rD.p?r

查看答案和解析>>

同步练习册答案