分析 (1)ω=$\frac{π}{4}$时求出函数y的单调增区间和对称中心;
(2)①由图知B是函数图象的最高点,设出点B的坐标和最小正周期,表示出点A、C的坐标,利用坐标表示向量$\overrightarrow{AB}$、$\overrightarrow{BC}$,根据数量积求出T、ω的值;
②由x的取值范围求出函数y的最大值,计算对应的x值.
解答 解:(1)ω=$\frac{π}{4}$时,函数y=$\sqrt{3}$sin($\frac{π}{4}$x+$\frac{π}{4}$),
令-$\frac{π}{2}$+2kπ≤$\frac{π}{4}$x+$\frac{π}{4}$≤$\frac{π}{2}$+2kπ,k∈Z,
解得:-3+8k≤x≤1+8k,k∈Z,
∴函数y的单调增区间为[-3+8k,1+8k],(k∈Z);…(4分)
令$\frac{π}{4}$x+$\frac{π}{4}$=kπ,k∈Z,
解得x=-1+4k,k∈Z,
∴函数y的对称中心为(-1+4k,0),(k∈Z);…(8分)
(2)①由图知:点B是函数图象的最高点,设B(xB,$\sqrt{3}$),
设函数最小正周期为T,则A(xB-$\frac{T}{4}$,0),C(xB+$\frac{3T}{4}$,0);
∴$\overrightarrow{AB}$=($\frac{T}{4}$,$\sqrt{3}$),
$\overrightarrow{BC}$=($\frac{3T}{4}$,-$\sqrt{3}$),…(10分)
由$\overrightarrow{AB}$⊥$\overrightarrow{BC}$,得$\overrightarrow{AB}$•$\overrightarrow{BC}$=$\frac{3}{16}$T2-3=0,
解得:T=4,
∴ω=$\frac{2π}{4}$=$\frac{π}{2}$;…(12分)
②由x∈[0,2]得$\frac{π}{2}$x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{4}$],
∴sin($\frac{π}{2}$x+$\frac{π}{4}$)∈[-$\frac{\sqrt{2}}{2}$,1],
∴函数y在[0,2]上的最大值为$\sqrt{3}$,…(14分)
此时$\frac{π}{2}$x+$\frac{π}{4}$=$\frac{π}{2}$+2kπ,k∈Z,
则x=$\frac{1}{2}+$4k,k∈Z;
又x∈[0,2],∴x=$\frac{1}{2}$.…(16分)
点评 本题考查了三角函数的图象与性质的应用问题,也考查了数形结合以及平面向量的应用问题,是综合性题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
中学 | 甲 | 乙 | 丙 | 丁 |
人数 | 30 | 40 | 20 | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{2}{3}$ | B. | -$\frac{2}{3}$ | C. | $\frac{2\sqrt{2}}{3}$ | D. | -$\frac{2\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com