精英家教网 > 高中数学 > 题目详情
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若内恒成立,求实数的取值范围.
(Ⅲ),求证:
(Ⅰ)当时,单调递减,在上单调递增;
时,单调递减,在,上单调递增;
时,上单调递增;
时,单调递减, 在,上单调递增;
(Ⅱ)
(Ⅲ)详见解析

试题分析:(Ⅰ)利用导数的符号确定函数的单调区间。函数含有参数,故需要分情况讨论.
(Ⅱ)思路一、一般地若任意使得,则;若任意使得,则.由得:恒成立,所以小于等于的最小值.
思路二、除外,的一个极值点,故可首先考虑这个特殊值.由得: ,这样只需考虑内是否恒成立.这是本题的特点,需要仔细观察、分析.若发现其特点,则运算大大简化.所以这个题有较好的区分度.
(Ⅲ)涉及数列求和的不等式的证明,一般有两种类型,一种是先求和,后放缩;一种先放缩,后求和.
本题显然属于后者.
解答题中的最后一问,往往要用前面的结论,本题也不例外.由(Ⅱ)取可得:,由此可将不等式左边各项放缩.
但是如果第一项也用这个结论来放缩,则得不到右边的式子.这时就考虑从第二项开始,或从第三项开始用这个结论.
试题解析:(Ⅰ)
时,单调递减,在上单调递增;
时,单调递减,在,上单调递增;
时,上单调递增;
时,单调递减, 在,上单调递增.
(Ⅱ)法一、由得:
,则
,则
所以由
所以内单调递减,在内单调递增.所以
从而
法二、由得:
时, 单调递减,在上单调递增
所以即:
所以若内恒成立,实数的取值范围为.
(Ⅲ)由(Ⅱ)知: 又时, (时取等号)
所以当时:
,所以
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数
(1)求的单调区间、最大值;
(2)讨论关于的方程的根的个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题13分)已知函数
(1)若实数求函数上的极值;
(2)记函数,设函数的图像轴交于点,曲线点处的切线与两坐标轴所围成图形的面积为则当时,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知a>0,函数.
(1)若,求函数的极值,
(2)是否存在实数,使得成立?若存在,求出实数的取值集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中
(I)求函数的单调区间;
(II)当时,若存在,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求函数的最大值;
(2)若函数没有零点,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=+aln(x-1)(a∈R).
(Ⅰ)若f(x)在[2,+∞)上是增函数,求实数a的取值范围;
(Ⅱ)当a=2时,求证:1-<2ln(x-1)<2x-4(x>2);
(Ⅲ)求证:+…+<lnn<1++ +(n∈N*,且n≥2).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

记不等式所表示的平面区域为D,直线与D有公共点,则的取值范围是________

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)讨论函数的单调区间;
(2)已知对定义域内的任意恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案