精英家教网 > 高中数学 > 题目详情
在△ABC中,设角A,B,C的对边分别为a,b,c,已知b2-bc-2c2=0,a=
6
cosA=
7
8
,则b=(  )
A、2B、4C、3D、5
分析:由已知的等式分解因式,求出b与c的关系,用c表示出b,然后根据余弦定理表示出cosA,把a与cosA的值代入即可得到b与c的关系式,将表示出的含c的式子代入即可得到关于b的方程,求出方程的解即可得到b的值.
解答:解:由b2-bc-2c2=0因式分解得:
(b-2c)(b+c)=0,
解得:b=2c,b=-c(舍去),
又根据余弦定理得:cosA=
b2+c2-a2
2bc
=
b2+c2-6
2bc
=
7
8

化简得:4b2+4c2-24=7bc,
将c=
b
2
代入得:4b2+b2-24=
7
2
b2,即b2=16,
解得:b=4或b=-4(舍去),
则b=4.
故选B
点评:此题考查了余弦定理,及等式的恒等变形.要求学生熟练掌握余弦定理的特征及等式的恒等变换.由已知等式因式分解得到b与c的关系式是本题的突破点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,设角A、B、C的对边分别为a、b、c,且
cosC
cosB
=
3a-c
b

(1)求sinB的值;
(2)若b=4
2
,且a=c,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•卢湾区二模)在△ABC中,设角A、B、C所对的边分别是a、b、c,若b2+c2=a2+
2
bc
,且a=
2
b
,则∠C=
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,设角A、B、C的对边分别为a、b、c,已知cos2A=sin2B+cos2C+sinAsinB.
(I)求角C的大小;
(Ⅱ)若c=
3
,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,设角A、B、C的对边分别为a、b、c,且
a
cosA
=
b
cosB
,则△ABC一定是(  )

查看答案和解析>>

同步练习册答案