精英家教网 > 高中数学 > 题目详情

【题目】等差数列{an}的前n项和记为Sn , 已知a10=30,a20=50.
(1)求通项{an};
(2)令Sn=242,求n.

【答案】
(1)解:由an=a1+(n﹣1)d,a10=30,a20=50,得

方程组 解得a1=12,d=2.所以an=2n+10


(2)解:由得由 ,Sn=242得

方程12n+ ×2=242.

解得n=11或n=﹣22(舍去)


【解析】(1)利用等差数列的通项公式根据a10和a20的值建立方程组,求得a1和d,则通项an可得.(2)把等差数列的求和公式代入进而求得n.
【考点精析】通过灵活运用等差数列的通项公式(及其变式)和数列的前n项和,掌握通项公式:;数列{an}的前n项和sn与通项an的关系即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆 的离心率为,过右焦点垂直于轴的直线与椭圆交于 两点且,又过左焦点任作直线交椭圆于点

(Ⅰ)求椭圆的方程;

(Ⅱ)椭圆上两点 关于直线对称,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a=20.5 , b=log43,c=log20.2,则(
A.a>b>c
B.b>a>c
C.c>a>b
D.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A={x| <3x<9},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定义A﹣B={x|x∈A且xB},求A﹣B和B﹣A.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.,当每辆车的月租金定为x元时,租赁公司的月收益为y元,
(1)试写出x,y的函数关系式(不要求写出定义域);
(2)租赁公司某月租出了88辆车,求租赁公司的月收益多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足an+1>an , a1=1,且该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项.
(1)求数列{an},{bn}的通项公式;
(2)令cn=anbn , 求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:

(1)由以上统计数据填列联表,并判断是否95%的把握认为以岁为界点的不同人群对“延迟退休年龄政策”的支持有差异;

(2)若以岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取人参加某项活动,现从这人中随机抽人.

①抽到人是岁以下时,求抽到的另一人是岁以上的概率;

②记抽到岁以上的人数为,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,已知点,曲线的参数方程为为参数).以原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为

(Ⅰ)判断点与直线的位置关系并说明理由;

(Ⅱ)设直线与曲线的两个交点分别为 ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四组函数中,是同一个函数的是(
A.
B.f(x)=2log2x,
C.f(x)=ln(x﹣1)﹣ln(x+1),
D.f(x)=lg(1﹣x)+lg(1+x),g(x)=lg(1﹣x2

查看答案和解析>>

同步练习册答案