精英家教网 > 高中数学 > 题目详情
9.直线4x-3y=0与圆x2+y2=36的位置关系是(  )
A.相交B.相离C.相切D.不能确定

分析 根据直线4x-3y=0过圆x2+y2=36的圆心,可得答案.

解答 解:圆x2+y2=36的圆心为(0,0),半径为6,
圆心在直线直线4x-3y=0上,
故直线与圆相交,
故选:A

点评 本题考查的知识点是直线与圆的位置关系,难度不大,属于基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知f(x)=x3+$\frac{3}{2}$x2-6x+c,若x∈[0,2]都有f(x)>2c-$\frac{1}{2}$恒成立,则c的取值范围是(-∞,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.对于数列{an},称$P({a_k})=\frac{1}{k-1}(|{{a_1}-{a_2}}|+|{{a_2}-{a_3}}|+…+|{{a_{k-1}}-{a_k}}|)$(其中k≥2,k∈N)为数列{an}的前k项“波动均值”.若对任意的k≥2,k∈N,都有P(ak+1)<P(ak),则称数列{an}为“趋稳数列”.
(1)若数列1,x,2为“趋稳数列”,求x的取值范围;
(2)若各项均为正数的等比数列{bn}的公比q∈(0,1),求证:{bn}是“趋稳数列”;
(3)已知数列{an}的首项为1,各项均为整数,前k项的和为Sk.且对任意k≥2,k∈N,都有3P(Sk)=2P(ak),试计算:$C_n^2P({a_2})+2C_n^3P({a_3})+…+(n-1)C_n^nP({a_n})$(n≥2,n∈N).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.$若log_a^{\;}\frac{2}{3}<1,(a>0且a≠1)$,则a的取值范围是(  )
A.($\frac{2}{3}$,1)B.(0,$\frac{2}{3}$)∪(1,+∞)C.(1,+∞)D.(0,$\frac{2}{3}$)∪($\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设离散型随机变量X的分布函数为F(x)=$\left\{\begin{array}{l}{0,x<-1}\\{\frac{1}{3},-1≤x<2}\\{1,x≥2}\end{array}\right.$,则P(X=2)=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知⊙O1与⊙O1的半径分别为5cm和3cm,圆心距O1O1=7cm,则两圆的位置关系相交.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知各项都不相等的等差数列{an}的前六项和为60,且a6为a1和a21的等比中项.
(1)求数列{an}的通项公式an及前n项和Sn
(2)若数列{bn}满足bn=n(n+2),求数列{$\frac{1}{b_n}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=a{x^3}-bx+\frac{c}{x}+2.f(-2)=7,则f(2)$=(  )
A.5B.-7C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一束光线从点P(-1,1)出发,经x轴反射到圆C:(x-2)2+(y-3)2=1上一点的最长路程是(  )
A.3$\sqrt{2}$-1B.2$\sqrt{6}$C.5D.6

查看答案和解析>>

同步练习册答案