我们知道,在边长为a的正三角形内任一点到三边的距离之和为定值,类比上述结论,在边长为a的正四面体内任一点到其四个面的距离之和为定值 。
科目:高中数学 来源: 题型:填空题
(文科做)(本题满分14分)如图,在长方体
ABCD—A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1E⊥A1D;
(2)当E为AB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1—EC-D的大小为.
(理科做)(本题满分14分)
如图,在直三棱柱ABC – A1B1C1中,∠ACB = 90°,CB = 1,
CA =,AA1 =,M为侧棱CC1上一点,AM⊥BA1.
(Ⅰ)求证:AM⊥平面A1BC;
(Ⅱ)求二面角B – AM – C的大小;
(Ⅲ)求点C到平面ABM的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
如图,正方体,则下列四个命题:
①在直线上运动时,三棱锥的体积不变;
②在直线上运动时,直线AP与平面ACD1所成角的大小不变;
③在直线上运动时,二面角的大小不变;
④M是平面上到点D和距离相等的点,
则M点的轨迹是过点的直线其中真命题的编号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
下列命题正确的有 .
①若直线与平面有两个公共点,则直线在平面内;
②若直线上有无数个点不在平面α内,则∥α;
③若直线与平面α相交,则与平面α内的任意直线都是异面直线;
④如果两条异面直线中的一条与一个平面平行,则另一条直线一定与该平面相交;
⑤若直线与平面α平行,则与平面α内的直线平行或异面;
⑥若平面α∥平面β,直线aα,直线bβ,则直线a∥b.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com