精英家教网 > 高中数学 > 题目详情

【题目】已知定义域为正整数集的函数f(x)= ,f1(x)=f(x),fn(x)=f[fn﹣1(x)].若fn(21)=1,则n=;若f4(x)=1,则x所有的值构成的集合为

【答案】6;{7,9,10,12,16}
【解析】解:∵定义域为正整数集的函数f(x)=

f1(x)=f(x),fn(x)=f[fn﹣1(x)].

fn(21)=1,

∴f6(21)=f5(20)=f4(10)=f3(5)=f2(4)=f1(2)=f(2)=1,

∴n=6.

∵f4(x)=1,

f4(16)=f3(8)=f2(4)=f1(2)=f(2)=1,

f4(12)=f3(6)=f2(3)=f1(2)=f(2)=1,

f4(10)=f3(5)=f2(4)=f1(2)=f(2)=1,

f4(9)=f3(8)=f2(4)=f1(2)=f(2)=1,

f4(7)=f3(6)=f2(3)=f1(2)=f(2)=1,

∴x所有的值构成的集合为{7,9,10,12,16}.

故答案为:6,{7,9,10,12,16}.

由f6(21)=f5(20)=f4(10)=f3(5)=f2(4)=f1(2)=f(2)=1,能求出n=6.由f4(x)=1,利用列举法能求出x所有的值构成的集合.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】假设某种设备使用的年限x(年)与所支出的维修费用y(元)有以下统计资料:

使用年限x

2

3

4

5

6

维修费用y

2.2

3.8

5.5

6.5

7.0

参考数据:
如果由资料知y对x呈线性相关关系.试求:
(1)
(2)线性回归方程 =bx+a.
(3)估计使用10年时,维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在 中, 分别为角 所对的边, 的面积,且
(I)求角 的大小;
(II)若 的中点,且 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对应的边分别为a,b,c,若 <cosA,则△ABC为(
A.锐角三角形
B.直角三角形
C.钝角三角形
D.非钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象如图所示,为了得到g(x)=Acosωx的图象,可以将f(x)的图象(
A.向左平移 个单位长度
B.向左平移 个单位长度
C.向右平移 个单位长度
D.向右平移 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心在x轴上,点 在圆C上,圆心到直线2x﹣y=0的距离为 ,则圆C的方程为(
A.(x﹣2)2+y2=3
B.(x+2)2+y2=9
C.(x±2)2+y2=3
D.(x±2)2+y2=9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数f(x)=
(1)求实数m的值,并在给出的直角坐标系中画出y=f(x)的图像.
(2)若函数f(x)在区间[﹣1,|a|﹣2]上单调递增,试确定a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种商品价格与该商品日需求量之间的几组对照数据如表:

价格x(元/kg)

10

15

20

25

30

日需求量y(kg)

11

10

8

6

5

参考公式:线性回归方程 ,其中
(1)求y关于x的线性回归方程;
(2)利用(1)中的回归方程,当价格x=40元/kg时,日需求量y的预测值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+8x+b(a,b为互不相等的正整数),方程f(x)=0的两个实根为x1 , x2(x1≠x2),且|x1|<1,|x2|<1,若f(1)+f(﹣1)的最大值与最小值分别为M,m,则M+m的值为

查看答案和解析>>

同步练习册答案