精英家教网 > 高中数学 > 题目详情

【题目】写出下列命题的否定,并判断真假:

(1)不论取何实数,方程必有实数根;

(2)所有末位数字是0或5的整数都能被5整除;

(3)某些梯形的对角线互相平分;

(4)被8整除的数能被4整除.

【答案】(1)存在实数,使得方程没有实数根,真命题;(2)存在末位数字是0或5的整数不能被5整除,是假命题;(3)任一个梯形的对角线都不互相平分,是真命题;(4)存在一个数能被8整除,但不能被4整除,是假命题.

【解析】

(1) 先将命题改写成含全称量词的形式得到全称命题,再将全称命题写成特称命题即可,利用判别式小于零有解说明命题是真命题.

(2) 先将命题改写成含全称量词的形式得到全称命题,再将全称命题写成特称命题即可,显然是假命题.

(3)先将命题改写成含特称量词的形式得到特称命题,再将特称命题写成全称命题即可,是真命题.

(4)先将命题改写成含全称量词的形式得到全称命题,再将全称命题写成特称命题即可,是假命题.

(1)这一命题可以表述为对所有的实数,方程都有实数根,其否定是存在实数,使得方程没有实数根.当,即时,该方程没有实根,因此是真命题.

(2)命题的否定:存在末位数字是0或5的整数不能被5整除,是假命题.

(3)命题的否定:任一个梯形的对角线都不互相平分,是真命题.

(4)命题的否定:存在一个数能被8整除,但不能被4整除,是假命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元。

(1)分别写出两类产品的收益与投资额的函数关系式;

(2)该家庭现有20万元资金,全部用于理财投资,怎样分配资金才能获得最大收益?其最大收益为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线经过点,其倾斜角为,以原点为极点,以轴为非负半轴为极轴,与坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程为.

(1)若直线与曲线有公共点,求倾斜角的取值范围;

(2)设为曲线上任意一点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中.

(1)函数的图象能否与轴相切?若能,求出实数若不能请说明理由

(2)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】铁人中学高二学年某学生对其亲属30人饮食习惯进行了一次调查,并用如图所示的茎叶图表示30人的饮食指数.(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主.)

(Ⅰ)根据茎叶图,帮助这位学生说明其亲属30人的饮食习惯;

(Ⅱ)根据以上数据完成下列的列联表:

主食蔬菜

主食肉类

合计

50岁以下人数

50岁以上人数

合计人数

(Ⅲ)能否在犯错误的概率不超过0.01的前提下认为其亲属的饮食习惯与年龄有关系?

附:.

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.

(1)求直方图的的值;

(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由.

(3)估计居民月用水量的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)用函数单调性的定义在在证明:函数在区间上单调递减,在上单调递增;

(2)若对任意满足的实数,都有成立,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为,则称该图形是“和谐图形”.已知其中四个三角形上的数字之和为,现从中任取两个数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线的左、右焦点分别为. 若点P在双曲线上,且为锐角三角形,则|PF1|+|PF2|的取值范围是

A. B. C. D.

查看答案和解析>>

同步练习册答案