【题目】设椭圆()的右焦点为,右顶点为,已知,其中 为原点, 为椭圆的离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率.
科目:高中数学 来源: 题型:
【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.
根据该折线图,下列结论错误的是( )
A. 月接待游客量逐月增加
B. 年接待游客量逐年增加
C. 各年的月接待游客量高峰期大致在7,8月
D. 各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边长分别为a,b,c,且cos2B﹣cos2A=2sinC(sinA﹣sinC).
(1)求角B的大小;
(2)若 ,求2a+c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆内一点,直线过点且与圆交于,两点.
(1)求圆的圆心坐标和面积;
(2)若直线的斜率为,求弦的长;
(3)若圆上恰有三点到直线的距离等于,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
(1)若,过点的直线交曲线于两点,且,求直线的方程;
(2)若曲线表示圆时,已知圆与圆交于两点,若弦所在的直线方程为, 为圆的直径,且圆过原点,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为,直线与抛物线相交于不同的, 两点.
(1)求抛物线的标准方程;
(2)如果直线过抛物线的焦点,求的值;
(3)如果,直线是否过一定点,若过一定点,求出该定点;若不过一定点,试说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com