【题目】给出以下四个结论:
①函数是偶函数;
②当时,函数的值域是;
③若扇形的周长为,圆心角为,则该扇形的弧长为6 cm;
④已知定义域为的函数,当且仅当时,成立.
则上述结论中正确的是______(写出所有正确结论的序号).
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中, , , ,若该三棱锥的四个顶点均在同一球面上,则该球的体积为( )
A. B. C. D.
【答案】D
【解析】在三棱锥中,因为, , ,所以,则该几何体的外接球即为以为棱长的长方体的外接球,则 ,其体积为 ;故选D.
点睛:在处理几何体的外接球问题,往往将所给几何体与正方体或长方体进行联系,常用补体法补成正方体或长方体进行处理,本题中由数量关系可证得 从而几何体的外接球即为以为棱长的长方体的外接球,也是处理本题的技巧所在.
【题型】单选题
【结束】
21
【题目】已知函数,则的大致图象为( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的奇函数,且当x<0时,f(x)=x2+2x.现已画出函数f(x)在y轴左侧的图象如图所示,
(1)画出函数f(x),x∈R剩余部分的图象,并根据图象写出函数f(x),x∈R的单调区间;(只写答案)
(2)求函数f(x),x∈R的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知幂函数满足.
(1)求函数的解析式;
(2)若函数,是否存在实数使得的最小值为0?若存在,求出的值;若不存在,说明理由;
(3)若函数,是否存在实数,使函数在上的值域为?若存在,求出实数的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P与投入a(单位:万元)满足,乙城市收益Q与投入a(单位:万元)满足,设甲城市的投入为x(单位:万元),两个城市的总收益为(单位:万元).
(1)求及定义域;
(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若存在实数,使得成立,则x0称为f(x)的“不动点”.
(1)设函数,求的不动点;
(2)设函数,若对于任意的实数b,函数f(x)恒有两相异的不动点,求实数a的取值范围;
(3)设函数定义在上,证明:若存在唯一的不动点,则也存在唯一的不动点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在xOy平面上,将两个半圆弧(x﹣1)2+y2=1(x≥1)和(x﹣3)2+y2=1(x≥3),两条直线y=1和y=﹣1围成的封闭图形记为D,如图中阴影部分,记D绕y轴旋转一周而成的几何体为Ω.过(0,y)(|y|≤1)作Ω的水平截面,所得截面积为4π +8π.试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱柱ABC﹣A1B1C1的侧棱与底面垂直,体积为 ,底面是边长为 的正三角形,若P为底面A1B1C1的中心,则PA与平面A1B1C1所成角的大小为( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com