精英家教网 > 高中数学 > 题目详情
定义在[-2,2]上的奇函数g(x),当x≥0时,g(x)单调递减,若g(1-2m)<g(m),求m的取值范围.
由题意可得函数g(x)在定义域[-2,2]上是减函数,再由g(1-2m)<g(m),可得
-2≤1-2m≤2
-2≤m≤2
1-2m>m

解得-
1
2
<m<
1
3

故m的取值范围为(-
1
2
1
3
).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

函数f(x)=
x2-x4
|x-2|-2
.给出函数f(x)下列性质:(1)函数的定义域和值域均为[-1,1];(2)函数的图象关于原点成中心对称;(3)函数在定义域上单调递增;(4)Af(x)dx=0(其中A为函数的定义域);(5)A、B为函数f(x)图象上任意不同两点,则
2
<|AB|≤2
.请写出所有关于函数f(x)性质正确描述的序号______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数lnx≤xem2-m-1对任意的正实数x恒成立,则m的取值范围是(  )
A.(-∞,0]∪[1,+∞)B.[0,1]C.[e,2e]D.(-∞,e)∪[2e,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数y=f(x+1)为偶函数,且f(x)在(1,+∞)上递减,设a=f(log210),b=f(log310),c=f(0.10.2),则a,b,c的大小关系正确的是(  )
A.a>b>cB.b>a>cC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(B题)奇函数y=f(x)在定义域[-1,1]上是增函数,则满足f(m-1)+f(2m-1)<0的m的取值范围为(  )
A.[0,1]B.[0,
2
3
C.[0,
2
3
]
D.[0,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)一个矩形的面积为8,如果此矩形的对角线长为y,一边长为x,试把y表示成x的函数.
(2)证明:函数f(x)=x2+1是偶函数,且在[0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若函数f(x)是奇函数,g(x)是偶函数,且f(x)-g(x)=x2+2x+3,求f(x),g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(x)是定义在R上的奇函数,且满足f(x+3)=f(x),f(1)>1,f(2)=
2m-3
m+1
,则实数m的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若函数f(x)是奇函数,x∈R,当x>0时,f(x)=x2-sinx,求:当x<0时,f(x)的表达式.

查看答案和解析>>

同步练习册答案