【题目】某地区2009年至2015年农村居民家庭人均纯收入y(单位:千元)的数据如表:
年份 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为: . .
参考数据:(﹣3)×(﹣1.4)+(﹣2)×(﹣1)+(﹣1)×(﹣0.7)+1×0.5+2×0.9+3×1.6=14.
【答案】
(1)解:由所给数据计算得
= =4,
= =4.4,
(ti﹣ )2=9+4+1+0+1+4+9=28,
(ti﹣ )(yi﹣ )=(﹣3)×(﹣1.4)+(﹣2)×(﹣1)+(﹣1)×(﹣0.7)+1×0.5+2×0.9+3×1.6=14.,
= =0.5, =4.3﹣0.5×4=2.3,
所求回归方程为y=0.5t+2.3
(2)解:由(1)知,b=0.5>0,故2009年至2015年该地区居民家庭人均纯收入逐年增加,平均每年增加0.5千元.
将2017年的年份代号t=9代入(1)的回归方程,得y=6.8,
故预测该地区2017年该地区居民家庭人均纯收入约为6.8千元.
【解析】(1)先求出年份代号t和人均纯收入y的平均数,得到这组数据的样本中心点,利用最小二乘法求出线性回归方程的系数,代入样本中心点求出a的值,写出线性回归方程;(2)由(1)知,b=0.5>0,2009年至2015年该地区居民家庭人均纯收入逐年增加,平均每年增加0.5千元,求得2017年的年份代号t=9代入(1)的回归方程,得y的值.
科目:高中数学 来源: 题型:
【题目】设抛物线y2=2x的焦点为F,过点M( ,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于C,|BF|=2,则△BCF和△ACF的面积之比为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场经销某商品,根据以往资料统计,顾客采用的付款期数的分布列为:
1 | 2 | 3 | 4 | 5 | |
0.4 | 0.2 | 0.2 | 0.1 | 0.1 |
商场经销该商品,可采用不同形式的分期付款,付款的期数(单位: )与商场经销一件商品的利润(单位:元)满足如下关系:
(Ⅰ)若记事件“购买该商品的3位顾客中,至少有1位采用一次性全额付款方式”为,试求事件的概率;
(Ⅱ)求商场经销一件商品的利润的分布列及期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球.乙箱子里装有1个白球、2个黑球.每次游戏从这两个箱子里随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(1)求在1次游戏结束后,①摸出3个白球的概率?②获奖的概率?
(2)求在2次游戏中获奖次数X的分布列及数学期望E(X).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班名学生在一次坐位体前屈测试中,成绩全部介于与之间,将测试结果按如下方式分成五组:第一组,第二组,…,第五组,下图是按上述分组方法得到的频率分布直方图.
(Ⅰ)若成绩大于或等于且小于认为良好,求该班在这次坐位体前屈测试中成绩良好的人数;
(Ⅱ)若成绩之差的绝对值大于认为两位学生的身体韧度存在明显差异.现从第一、五组中随机取出两个成绩,求这两位学生的身体韧度存在明显差异的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为检验寒假学生自主学习的效果,年级部对某班50名学生各科的检测成绩进行了统计,下面是政治成绩的频率分布直方图,其中成绩分组区间是: , , , , , .
(1)求图中的值及平均成绩;
(2)从分数在中选5人记为,从分数在中选3人,记为,8人组成一个学习小组.现从这5人和3人中各选1人做为组长,求被选中且未被选中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂今年前五个月每月生产某种产品的数量C(件)关于时间t(月)的函数图象如图所示,则这个工厂对这种产品来说( )
A.一至三月每月生产数量逐月增加,四、五两月每月生产数量逐月减少
B.一至三月每月生产数量逐月增加,四、五月每月生产数量与三月持平
C.一至三月每月生产数量逐月增加,四、五两月均停止生产
D.一至三月每月生产数量不变,四、五两月均停止生产
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用简单随机抽样方法从含有6个个体的总体中,抽取一个容量为2的样本,某一个体a“第一次被抽到的概率”、“第二次被抽到的概率”、“在整个抽样过程中被抽到”的概率分别是
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com