精英家教网 > 高中数学 > 题目详情
设集合A={1,2,3,4,5},映射f:A→A满足:对任意x∈A,有f(1)<f(2)<f(3),则这样映射f的个数共有
250
250
个.(用数字作答)
分析:从1、2、3、4、5种任意选出3个数,分别作为f(1)、f(2)、f(3)的值,方法有
C
3
5
种.
A中的原象还剩下2个元素,每一个元素对应集合B都有5中可能,一共52种情况,根据分步计数原理求得结果.
解答:解:从1、2、3、4、5种任意选出3个数,分别作为f(1)、f(2)、f(3)的值,方法有
C
3
5
种.
A中的原象还剩下2个元素,每一个元素对应集合B都有5中可能,一共52种情况,
根据分步计算可得:这样的映射f的个数为
C
3
5
•52=250,
故答案为 250.
点评:此题主要考查映射的定义及其应用,解题的过程需要分步进行求解,此题是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、设集合A={1,2,3},满足B=A∩B的集合B的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b.
(Ⅰ)若向量
m
=(a,b),
n
=(1,-1)
,求向量
m
n
的夹角为锐角的概率;
(Ⅱ) 记点P(a,b),则点P(a,b)落在直线x+y=n上为事件Cn(2≤n≤5,n∈N),求使事件Cn的概率最大的n.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={1,2},B={1,2,3},分别从集合A和B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=3上”为事件C,则C的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={1,2,3},B={2,3,4,5},则A∩B=
{2,3}
{2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={1,2,3,4},B={3,4,5},则满足S⊆A且S∩B≠∅,试写出满足条件的所有集合S有
12
12
个.

查看答案和解析>>

同步练习册答案