精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
某市一次全市高中男生身高统计调查数据显示:全市100 000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160 cm和184 cm之间,将测量结果按如下方式分成6组:第一组 [160,164],第二组[164,168],…,第6组[180,184],下图是按上述分组方法得到的频率分布直方图.

(Ⅰ)试评估该校高三年级男生在全市高中男生中的平均身高状况;
(Ⅱ)求这50名男生身高在172 cm以上(含172 cm)的人数;
(Ⅲ)在这50名男生身高在172 cm以上(含172 cm)的人中任意抽取2人,该2人中身高排名(从高到低)在全市前130名的人数记为,求的数学期望.
参考数据:
.则
=0.6826,
="0.9544,"
=0.9974.

(Ⅰ)高于全市的平均值168。
(Ⅱ)这50名男生身高在172 cm以上(含172 cm)的人数为10人.
(Ⅲ)

解析试题分析:(Ⅰ)由直方图,经过计算该校高三年级男生平均身高为

高于全市的平均值168(或者:经过计算该校高三年级男生平均身高为168.72,比较接近全市的平均值168).  …………………………………………………………(4分)
(Ⅱ)由频率分布直方图知,后三组频率为(0.02+0.02+0.01)×4=0.2,人数为0.2×5=10,即这50名男生身高在172 cm以上(含172 cm)的人数为10人.  ……………(6分)
(Ⅲ)
,0.0013×100 000=130.
所以,全市前130名的身高在180 cm以上,这50人中180 cm以上的有2人.
随机变量可取,于是
,,
.     …………………(12分)
考点:本题主要考查离散性随机变量的分布列及数学期望。
点评:本题是对频率、频数灵活运用的综合考查,各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系:频率=.涉及组合数计算要细心。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80 mg/100ml(不含80)之间,属于酒后驾车;在80mg/100ml(含80)以上时,属醉酒驾车,对于酒后驾车和醉酒驾车的驾驶员公安机关将给予不同程度的处罚.
某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了250辆机动车,查出酒后
驾车和醉酒驾车的驾驶员20人,下图是对这20人血液中酒精含量进行检查所得结果的频率分布
直方图.

(1)根据频率分布直方图,求此次抽查的250人中,醉酒驾车的人数;
(2)从血液酒精浓度在[70,90)范围内的驾驶员中任取2人,求恰有1人属于醉酒驾车的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
某校为了探索一种新的教学模式,进行了一项课题实验,乙班为实验班,甲班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,成绩如下表(总分:150分):
甲班

成绩





频数
4
20
15
10
1
乙班
成绩





频数
1
11
23
13
2
(1)现从甲班成绩位于内的试卷中抽取9份进行试卷分析,请问用什么抽样方法更合理,并写出最后的抽样结果;
(2)根据所给数据可估计在这次测试中,甲班的平均分是101.8,请你估计乙班的平均分,并计算两班平均分相差几分;
(3)完成下面2×2列联表,你认为在犯错误的概率不超过0.025的前提下, “这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由。
 
成绩小于100分
成绩不小于100分
合计
甲班

26
50
乙班
12

50
合计
36
64
100
附:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

驾驶员血液酒精浓度在20~80 mg/100 mL(不含80)之间,属酒后驾车,血液酒精浓度在80 mg/100 mL(含80)以上时,属醉酒驾车.市交警一队对过往的车辆进行抽查共查出喝过酒的驾车者60名,下图是这60名驾车者血液中酒精浓度的频率分布直方图.
(1) 求这60名驾车者中属醉酒驾车的人数;(图中每组包括左端点,不包括右端点)
(2) 求这60名驾车者血液的酒精浓度的平均值;
(3) 将频率分布直方图中的七组从左到右依次命名为第一组,第二组,…,第七组,在第五组和第七组的所有人中抽出两人,记他们的血液酒精浓度分别为x,y(单位: mg/100 ml),则事件|x-y|≤10的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有1000名学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成的频率分布表和频数分布条形图,解答下列问题:

(1)求频率分布表中的值,并补全频数条形图;
(2)根据频数条形图估计该样本的中位数是多少?
(3)若成绩在65.5~85.5分的学生为三等奖,问该校获得三等奖的学生约为多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有800名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计. 请你根据尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:

分组
频数
频率
50.5~60.5
6
0.08
60.5~70.5
 
0.16
70.5~80.5
15
 
80.5~90.5
24
0.32
90.5~100.5
 
 
合计
75
 
 

(Ⅰ)填充频率分布表的空格(将答案直接填在答题卡的表格内);
(Ⅱ)补全频率分布直方图;
(Ⅲ)若成绩在75.5~85.5分的学生为二等奖,问获得二等奖的学生约为多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人。女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动。
(1)根据以上数据建立一个2×2的列联表;
(2)判断性别与休闲方式是否有关系。
附:


0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:

(1)试确定x,y的值,并写出该样本的众数和中位数(不必写出计算过程);
(2)完成相应的频率分布直方图.
(3)求出样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:
    
(1)79.5到89.5这一组的频率、频数分别是多少?
(2)估计这次环保知识竞赛的及格率(60分及以上为及格).
(3)估计这次环保知识竞赛的平均分.

查看答案和解析>>

同步练习册答案