精英家教网 > 高中数学 > 题目详情
如图,矩形ABCD和AB′C′D全等,且所在平面所成的二面角为α,记两个矩形对角线的交点分别为Q,Q′,AB=a,AD=b.

(1)求证:QQ′∥平面ABB′;

(2)当b=a,且α=时,求异面直线AC与DB′所成的角;

(3)当a>b,且AC⊥DB′时,求二面角α的余弦值(用a,b表示).

解:(1)证明:连结BB′,∵Q,Q′分别是BD,B′D′的中点,

∴QQ′∥BB′.而BB′平面ABB′,∴QQ′∥平面ABB′.

(2)以A为原点,AB,AD分别为x轴,z轴建立空间直角坐标系,如图:

由条件可设A(0,0,0),B(a,0,0),C(a,0,b),D(0,0,b),

又∠BAB′=,AB′=a,

∴B′(,,0),C′(,,b),

=(a,0,b),=(,,-b).设异面直线AC与DB′所成角为θ,

cosθ====,所以异面直线AC与DB′所成角为60°.

(3)设B′(p,q,0),C′(p,q,b),∵AB′=a,∴p2+q2=a2.

=(p,q,-b).又有=(a,0,b),∵AC⊥DB′,

·=pa-b2=0,得pa=b2.设平面AB′C′D的法向量为n=(x,y,z),

n,n,而=(0,0,b),=(p,q,0),

n=(,1,0),设平面ABCD的法向量为m,则m=(0,±1,0),

∴cosα=±.

练习册系列答案
相关习题

科目:高中数学 来源:2011-2012学年山东省高考模拟预测卷理科数学试卷(二)(解析版) 题型:解答题

如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=,AD=,EF=2.

(Ⅰ)求证:AE//平面DCF;

(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年宁夏高三第五次月考数学理卷 题型:解答题

(本小题满分12分)

如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=,AD=,EF=2.

(1)求证:AE//平面DCF;

(2)当AB的长为何值时,二面角A-EF-C的大小为.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年河北省高二下学期期中考试理科数学 题型:解答题

 

(本小题满分12分)

如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=,AD=,EF=2.

(1)求证:AE//平面DCF;

(2)当AB的长为何值时,二面角A-EF-C的大小为

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=,AD=,EF=2。

(Ⅰ)求证:AE//平面DCF;

(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为

查看答案和解析>>

科目:高中数学 来源: 题型:

(浙江卷理18)如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=,AD=,EF=2。

(Ⅰ)求证:AE//平面DCF;

(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为

查看答案和解析>>

同步练习册答案