精英家教网 > 高中数学 > 题目详情

【题目】下列结论中正确的个数是(

①在中,“”是“”的必要不充分条件;

②若的最小值为2

③夹在圆柱的两个平行截面间的几何体是圆柱;

④数列的通项公式为,则数列的前项和.(

A.0B.1C.2D.3

【答案】A

【解析】

由三角函数的单调性以及充分条件和必要条件的定义进行判断①,举反例判断②,根据圆柱的定义判断③,由等比数列的性质与求和公式判断④.

对于①,在中,,得,反之也成立,即的充要条件,所以①不正确;

对于②,当时,,所以,所以最小值为2,不正确,所以②不正确;

对于③,夹在圆柱的两个平行截面间的几何体是圆柱,不正确,只有当截面平行于底面时是圆柱,所以③不正确;

对于④,数列的通项公式为,当时,数列项和

时,,所以④不正确.

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对数列,规定为数列的一阶差分数列,其中,规定的二阶差分数列,其中.

1)数列的通项公式,试判断是否为等差数列,请说明理由?

2)数列是公比为的正项等比数列,且,对于任意的,都存在,使得,求所有可能的取值构成的集合;

3)各项均为正数的数列的前项和为,且,对满足的任意正整数,都有,且不等式恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)的零点是.

1)设曲线在零点处的切线斜率分别为,判断的单调性;

2)设的极值点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,分别是棱的中点,点在对角线上运动.的面积取得最小值时,点的位置是(

A.线段的三等分点,且靠近点B.线段的中点

C.线段的三等分点,且靠近点D.线段的四等分点,且靠近点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列)的各项均为正整数,且.若对任意,存在正整数使得,则称数列具有性质.

1)判断数列与数列是否具有性质;(只需写出结论)

2)若数列具有性质,且,求的最小值;

3)若集合,且(任意.求证:存在,使得从中可以选取若干元素(可重复选取)组成一个具有性质的数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的部分图象如图所示,则下列叙述正确的是( )

A.函数的图象可由的图象向左平移个单位得到

B.函数的图象关于直线对称

C.函数在区间上是单调递增的

D.函数图象的对称中心为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.是自然对数的底数)

1)求的单调递减区间;

2)若函数,证明上只有两个零点.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.

方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.

方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.

(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;

(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=lnxex2x0.

1)求函数yfx)的图象在点x2处的切线方程;

2)求证:fx)<0.

查看答案和解析>>

同步练习册答案