精英家教网 > 高中数学 > 题目详情
2.已知正六边形ABCDEF,在下列表达式中与$\overrightarrow{AC}$等价的有(  )
①$\overrightarrow{BC}$+$\overrightarrow{CD}$+$\overrightarrow{EC}$;②2$\overrightarrow{BC}$+$\overrightarrow{DC}$;③$\overrightarrow{FE}$+$\overrightarrow{ED}$;④2$\overrightarrow{ED}$-$\overrightarrow{FA}$.
A.1个B.2个C.3个D.4个

分析 由条件利用平面向量的加法的三角形法则进行判断,从而得出结论.

解答 解:在正六边形ABCDEF,
①$\overrightarrow{BC}$+$\overrightarrow{CD}$+$\overrightarrow{EC}$=$\overrightarrow{BD}$+$\overrightarrow{FB}$=$\overrightarrow{FD}$=$\overrightarrow{AC}$;
②2$\overrightarrow{BC}$+$\overrightarrow{DC}$=$\overrightarrow{AD}$+$\overrightarrow{DC}$=$\overrightarrow{AC}$;
③$\overrightarrow{FE}$+$\overrightarrow{ED}$=$\overrightarrow{FD}$=$\overrightarrow{AC}$;
④2$\overrightarrow{ED}$-$\overrightarrow{FA}$=$\overrightarrow{FC}$+$\overrightarrow{AF}$=$\overrightarrow{AC}$.
故与$\overrightarrow{AC}$等价的有4个,
故选:D.

点评 本题考查平面向量的加法的三角形法则应用,是基础题,解题时要注意数形结合思想的合理运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设Sn为等差数列{an}的前n项和,已知a5=9,S5=25.
(1)求数列{an}的通项公式;
(2)记bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,Tn为数列{bn}的前n项和,求Tn的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知空间四点A(0,1,0),B(1,0,$\frac{1}{2}$),C(0,0,1),D(1,1,$\frac{1}{2}$),则异面直线AB,CD所成的角的余弦值为$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足(4$\overrightarrow{a}$-3$\overrightarrow{c}$)+3(5$\overrightarrow{c}$-4$\overrightarrow{b}$)=$\overrightarrow{0}$,则$\overrightarrow{c}$=$-\frac{1}{3}$$\overrightarrow{a}$+$\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a,b∈R+,则“(a-1)(b-1)>0”是“logab>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知抛物线y2=2px(p>0)的焦点为F,其准线与x轴相交于点K,直线l过焦点F且倾斜角为α,则点K到直线l的距离为psinα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数y=Asin(ωx+φ)+B(A>0,ω>0,|ϕ|<$\frac{π}{2}$)的最大值为2$\sqrt{2}$,最小值为$-\sqrt{2}$,周期为$\frac{2π}{3}$,且图象过点(0,-$\frac{{\sqrt{2}}}{4}$),
(1)这个函数的解析式;
(2)写出函数的对称轴和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.cos$\frac{π}{12}$+$\sqrt{3}$sin$\frac{π}{12}$的值为(  )
A.-$\sqrt{2}$B.$\sqrt{2}$C.$\frac{1}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数y=a-bcos3x(b>0)的最大值为$\frac{3}{2}$,最小值为-$\frac{1}{2}$,求函数y=-4asin3bx的单调区间、最大值和最小正周期.

查看答案和解析>>

同步练习册答案