精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的长半轴为,短半轴为.椭圆的两个焦点分别为,离心率为方程的一根长半轴为,短半轴为.若.

(Ⅰ)求椭圆的方程;

(Ⅱ)如图,过椭圆上且位于轴左侧的一点作圆的两条切线,分别交轴于点.试推断是否存在点,使?若存在,求出点的坐标;若不存在,请说明理由.

答案见解析

【解析】(Ⅰ)由可得椭圆的离心率为,故解得.所以,所以椭圆的方程为. ...............4分

(Ⅱ)设点),,则直线的方程为,即,因为圆心到直线的距离为,即,即,即,同理.由此可知,为方程的两个实根,所以 .因为点在椭圆上,所以,即,则,令,则,因为,所以,即

故存在点满足题设条件.……12分

【命题意图】本题考查椭圆的标准方程,圆的切线问题等基础知识,意在考查转化与化归能力,综合分析问题和解决问题的能力,及基本运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列四种说法: ①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
②函数y=x3与y=3x的值域相同;
③函数y= + 与y= 都是奇函数;
④函数y=(x﹣1)2与y=2x1在区间[0,+∞)上都是增函数.
其中正确的序号是(把你认为正确叙述的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某城市气象部门的数据中,随机抽取了100天的空气质量指数的监测数据如表:

空气质量指数t

(0,50]

(50,100]

(100,150]

(150,200]

(200,300]

质量等级

轻微污染

轻度污染

中度污染

严重污染

天数K

5

23

22

25

15

10

(1)在该城市各医院每天收治上呼吸道病症总人数y与当天的空气质量t(t取整数)存在如下关系y=,且当t>300时,y>500估计在某一医院收治此类病症人数超过200人的概率;

(2)若在(1)中,当t>300时,y与t的关系拟合于曲线,现已取出了10对样本数据(ti,yi)(i=1,2,3,…,10),且,求拟合曲线方程.

(附:线性回归方程=a+bx中,b=,a=﹣b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(1,﹣1),B(4,0),C(2,2),平面区域D是所有满足 (1<λ≤a,1<μ≤b)的点P(x,y)组成的区域.若区域D的面积为4,则ab﹣a﹣b=(
A.﹣1
B.﹣
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一(2)班共有60名同学参加期末考试,现将其数学学科成绩(均为整数)分成六个分数段 ,…, ,画出如下图所示的部分频率分布直方图,请观察图形信息,回答下列问题:

(1)估计这次考试中数学学科成绩的中位数;

(2)现根据本次考试分数分成下列六段(从低分段到高分段依次为第一组、第二组、…、第六组)为提高本班数学整体成绩,决定组与组之间进行帮扶学习.若选出的两组分数之差大于30分(以分数段为依据,不以具体学生分数为依据),则称这两组为“最佳组合”,试求选出的两组为“最佳组合”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答
(1)已知正数x,y满足x+2y=1,求 1 x + 1 y 的最小值
(2)已知x>1,求:y=x+最小值,并求相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)已知函数,其中,且

(Ⅰ)讨论函数的单调性;

(Ⅱ)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x(1+m|x|),关于x的不等式f(x)>f(x+m)的解集记为T,若区间[﹣ ]T,则实数m的取值范围是(
A.( ,0)
B.( ,0)
C.(﹣∞,
D.( ,0)∪(0,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数
(1)求函数f(x)的单调减区间;
(2)若 ,求函数f(x)的值域.

查看答案和解析>>

同步练习册答案