精英家教网 > 高中数学 > 题目详情
2.设方程x2-$\sqrt{10}$x+2=0的两根为α、β,求$lo{g}_{2}\frac{{α}^{2}-αβ+{β}^{2}}{(α-β)^{2}}$的值.

分析 首先根据一元二次方程求出α+β=$\sqrt{10}$,α•β=2,进一步对关系式$\frac{{α}^{2}-αβ+{β}^{2}}{(α-β)^{2}}$进行恒等变换,最后求出结果.

解答 解:α、β是方程x2-$\sqrt{10}$x+2=0的两实根,
则:α+β=$\sqrt{10}$,α•β=2.
故:$\frac{{α}^{2}-αβ+{β}^{2}}{(α-β)^{2}}$=$\frac{(α+β)^{2}-3αβ}{(α+β)^{2}-4αβ}$=2,
则:$lo{g}_{2}\frac{{α}^{2}-αβ+{β}^{2}}{(α-β)^{2}}$=1.

点评 本题考查的知识要点:一元二次方程的根和系数的关系,对数的运算和式子的恒等变形问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.己知幂函数y=f(x)的图象过点(2,4),则f(log2$\frac{\sqrt{2}}{2}$)=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a>0且a≠1,f(x)+g(x)=ax-a-x+2,其中f(x)为R上的奇函数,g(x)为R上的偶函数,若g(2)=a,则f(2)的值为(  )
A.2B.1C.$\frac{17}{4}$D.$\frac{15}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在数列{an}中,Sn是其前n项和,且Sn≠0,a1=1,an=$\frac{2{{S}^{2}}_{n}}{2{S}_{n-1}}$(n≥2),求Sn与an

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1(-1,0)、F2(1,0),P为双曲线上任一点,若双曲线的离心率的取值范围为[$\sqrt{2}$,2],则$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$最小值的取值范围是(  )
A.[$\frac{1}{2}$,$\frac{3}{4}$]B.[-$\frac{3}{4}$,-$\frac{1}{2}$]C.[-$\frac{1}{2}$,-$\frac{1}{4}$]D.[$\frac{1}{4}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知正方体ABCD-A1B1C1D1,各棱长为1,O是底面ABCD对角线的交点.
(1)求棱锥B1-A1BC1的体积;
(2)求证:D1O∥面A1BC1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算:(-1006)0+($\frac{16}{81}$)${\;}^{-\frac{1}{4}}$+(3$\frac{3}{8}$)${\;}^{\frac{1}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2|$\overrightarrow{b}$|≠0,且关于x的函数f(x)=2x3-3|$\overrightarrow{a}$|x2+6$\overrightarrow{a}$•$\overrightarrow{b}$x+5在实数集R上有极值,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角的取值范围是(  )
A.($\frac{π}{3}$,π)B.($\frac{π}{3}$,π]C.[$\frac{π}{3}$,π]D.(0,$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.△ABC的三边长a,b,c和面积S满足S=$\frac{1}{2}$[c2-(a-b)2].
(1)求cosC;
(2)若c=2,且2sinAcosC=sinB,求b的长.

查看答案和解析>>

同步练习册答案