精英家教网 > 高中数学 > 题目详情

【题目】如图,已知等边中,分别为边的中点,的中点,边上一点,且,将沿折到的位置,使平面平面EFCB.

(Ⅰ)求证:平面平面

(Ⅱ)求二面角的余弦值.

【答案】(1)见解析(2)

【解析】试题分析:(1)证明A'MEF,推出A'M平面EFCB,得到A'MBF,证明BFMN.得到BF平面A'MN.然后证明平面A'MN平面A'BF

(2)设等边的边长为4,取中点连接,由题设知由(1)知平面,又平面,所以,如图建立空间直角坐标系,利用两个平面的法向量的夹角即可得出.

试题解析:

(I)因为为等边边的中点,所以是等边三角形,且.因为的中点,所以.

又由于平面平面,平面,所以平面

平面,所以.

因为,所以,所以.

在正中知,所以.

,所以平面.

又因为平面,所以平面平面.

(II)设等边的边长为4,取中点

连接,由题设知

由(I)知平面,又平面,所以,如图建立空间直角坐标系,则,,,,.

设平面的一个法向量为,则由

,则.

平面的一个法向量为

所以

显然二面角是锐角,所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的单调区间;

(2)对任意的,恒有,求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(x≠0,常数a∈R).

(1)判断f(x)的奇偶性,并说明理由;

(2)若f(1)=2,试判断f(x)在[2,+∞)上的单调性

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆+y2=1上两个不同的点A,B关于直线y=mx+对称.

(1)求实数m的取值范围;

(2)求△AOB面积的最大值(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计算下列各式:

1

2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点分别为 交于O,A两点(O为坐标原点),且

求抛物线的方程;

过点O的直线交的下半部分于点M,交的左半部分于点N,点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车租赁公司为了调查A,B两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表:
A型车

出租天数

1

2

3

4

5

6

7

车辆数

5

10

30

35

15

3

2

B型车

出租天数

1

2

3

4

5

6

7

车辆数

14

20

20

16

15

10

5


(1)从出租天数为3天的汽车(仅限A,B两种车型)中随机抽取一辆,估计这辆汽车恰好是A型车的概率;
(2)根据这个星期的统计数据,估计该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率;
(3)如果两种车型每辆车每天出租获得的利润相同,该公司需要从A,B两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系,直线的参数方程为,曲线的极坐标方程为.

(1)写出直线的直角坐标方程和曲线的普通方程;

(2)求直线与曲线的交点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极点为直角坐标系的原点,极轴为x轴正半轴且单位长度相同的极坐标系中曲线C1:ρ=1, (t为参数).
(Ⅰ)求曲线C1上的点到曲线C2距离的最小值;
(Ⅱ)若把C1上各点的横坐标都扩大为原来的2倍,纵坐标扩大为原来的 倍,得到曲线 .设P(﹣1,1),曲线C2 交于A,B两点,求|PA|+|PB|.

查看答案和解析>>

同步练习册答案