精英家教网 > 高中数学 > 题目详情

 已知f (x)为偶函数,且f (2+x)=f (2-x),当-2≤x≤0时,f (x)=2x, an=f (n), nN*,则a2010的值为

A.2010             B.4                           D.-4

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的不恒为零的函数,且对于任意实数a,b都有f(a•b)=af(b)+bf(a),则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•宝山区二模)已知f(x)=
10x+a10x+1
是奇函数.
(1)求a的值;
(2)求f(x)的反函 数 f-1(x),判断f-1(x)的奇偶性,并给予证明;
(3)若函数y=F(x)是以2为周期的奇函数,当x∈(-1,0)时,F(x)=f-1(x),求x∈(2,3)时F(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下表为函数f(x)=ax3+cx+d部分自变量取值及其对应函数值,为了便于研究,相关函数值取非整数值时,取值精确到0.01.
x -0.61 -0.59 -0.56 -0.35 0 0.26 0.42 1.57 3.27
y 0.07 0.02 -0.03 -0.22 0 0.21 0.20 -10.04 -101.63
根据表中数据,研究该函数的一些性质:
(1)判断f(x)的奇偶性,并证明;
(2)判断f(x)在[0.55,0.6]上是否存在零点,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=数学公式是奇函数.
(1)求a的值;
(2)求f(x)的反函 数 f-1(x),判断f-1(x)的奇偶性,并给予证明;
(3)若函数y=F(x)是以2为周期的奇函数,当x∈(-1,0)时,F(x)=f-1(x),求x∈(2,3)时F(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知f(x)是定义在R上的不恒为零的函数,且对于任意实数a,b都有f(a•b)=af(b)+bf(a),则


  1. A.
    f(x)是奇函数,但不是偶函数
  2. B.
    f(x)是偶函数,但不是奇函数
  3. C.
    f(x)既是奇函数,又是偶函数
  4. D.
    f(x)既非奇函数,又非偶函

查看答案和解析>>

同步练习册答案