精英家教网 > 高中数学 > 题目详情
13.过直线x=2上一点P作圆:x2+y2=1的两条切线PA,PB,则kPA•kPB的最小值为-$\frac{1}{3}$.

分析 由题意设P(2,t),切线斜率为k,可得切线方程,由相切可得3k2-4tk+t2-1=0,kPA和kPB为方程的实根,由韦达定理和二次函数的最值可得.

解答 解:由题意设P(2,t),切线斜率为k,
则切线方程为y-t=k(x-2)即kx-y+t-2k=0,
由直线和圆相切可得$\frac{|t-2k|}{\sqrt{{k}^{2}+1}}$=1,
整理可得3k2-4tk+t2-1=0,
可得kPA和kPB为上面方程的实根,
故kPA•kPB=$\frac{1}{3}$(t2-1)≥-$\frac{1}{3}$
当且仅当t=0时取等号.
故答案为:-$\frac{1}{3}$.

点评 本题考查圆的切线方程,涉及点到直线的距离公式和韦达定理,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.某小学对五年级的学生进行体质测试,已知五年一班共有学生30人,测试立定跳远的成绩用茎叶图表示如图(单位:cm):
男生成绩在175cm以上(包括175cm)定义为“合格”,成绩在175cm以下(不包括175cm)定义为“不合格”.
女生成绩在165cm以上(包括165cm)定义为“合格”,成绩在165cm以下(不包括165cm)定义为“不合格”.
(Ⅰ)求五年一班的女生立定跳远成绩的中位数;
(Ⅱ)在五年一班的男生中任意选取3人,求至少有2人的成绩是合格的概率;
(Ⅲ)若从五年一班成绩“合格”的学生中选取2人参加复试,用X表示其中男生的人数,写出X的分布列,并求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设离散型随机变量ξ可能取到值为1,2,3,P(ξ=k)=ak+b(k=1,2,3),若ξ的数学期望Eξ=$\frac{7}{3}$,则a+b=$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|2x-1|+|2x+5|,f(x)-m≥0恒成立.
(I)求实数m的取值范围;
(Ⅱ)若m的最大值为n,解不等式|x-3|-2x≤2n-8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)和圆x2+y2=($\frac{b}{2}$t+$\frac{c}{2}$)2,(c为椭圆的半焦距)对任意t∈[1,2]恒有四个不同的交点,则椭圆的离心率e的取值范围为(  )
A.(0,$\frac{4}{5}$]B.($\frac{4}{5}$,1)C.(0,$\frac{\sqrt{2}}{2}$]D.($\frac{\sqrt{2}}{2}$,$\frac{4}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某盒子中装有标号分别为1、2、3、4、5的同质小球各2个,现从中一次性取出3个小球.
(I)求取出的3个小球上的最小标号为3的概率;
(Ⅱ)设X表示取出的3个小球上的最小标号,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,椭圆C与y轴交于A、B两点,|AB|=2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点P是椭圆C上的动点,且直线PA,PB与直线x=4分别交于M、N两点,是否存在点P,使得以MN为直径的圆经过点(2,0)?若存在,求出点P的横坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,点D满足$\overrightarrow{AD}$=$\frac{3}{4}\overrightarrow{AB}$,P为△ABC内一点,且满足$\overrightarrow{AP}$=$\frac{3}{10}\overrightarrow{AB}$+$\frac{2}{5}\overrightarrow{AC}$,则$\frac{{S}_{△APD}}{{S}_{△ABC}}$=(  )
A.$\frac{3}{10}$B.$\frac{9}{20}$C.$\frac{6}{35}$D.$\frac{9}{35}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=4sin(2x+φ)(|φ|<$\frac{π}{2}$)的图象关于直线x=$\frac{π}{12}$对称,且当x1,x2∈(-$\frac{7π}{6}$,-$\frac{5π}{12}$),x1≠x2时,f(x1)=f(x2),则f(x1+x2)等于(  )
A.4B.2$\sqrt{3}$C.2$\sqrt{2}$D.2

查看答案和解析>>

同步练习册答案