精英家教网 > 高中数学 > 题目详情

【题目】已知直线l:y=﹣x+3与椭圆C:mx2+ny2=1(n>m>0)有且只有一个公共点P(2,1).
(I)求椭圆C的标准方程;
(II)若直线l′:y=﹣x+b交C于A,B两点,且PA⊥PB,求b的值.

【答案】解:(I)联立直线l:y=﹣x+3与椭圆C:mx2+ny2=1(n>m>0), 可得(m+n)x2﹣6nx+9n﹣1=0,
由题意可得△=36n2﹣4(m+n)(9n﹣1)=0,即为9mn=m+n,
又P在椭圆上,可得4m+n=1,
解方程可得m= ,n=
即有椭圆方程为 =1;
(II)设A(x1 , y1),B(x2 , y2),
联立直线y=b﹣x和椭圆方程,可得3x2﹣4bx+2b2﹣6=0,
判别式△=16b2﹣12(2b2﹣6)>0,
x1+x2= ,x1x2=
y1+y2=2b﹣(x1+x2)= ,y1y2=(b﹣x1)(b﹣x2)=b2﹣b(x1+x2)+x1x2=
由PA⊥PB,即为 =(x1﹣2)(x2﹣2)+(y1﹣1)(y2﹣1)
=x1x2﹣2(x1+x2)+4+y1y2﹣(y1+y2)+1
= ﹣2 + +5=0,
解得b=3或 ,代入判别式,成立.
则b=3或
【解析】(I)联立直线与椭圆方程,消去y,可得x的方程,运用判别式为0,再将P的坐标代入椭圆方程,解方程可得m,n,进而得到椭圆方程;(II)设A(x1 , y1),B(x2 , y2),联立直线y=b﹣x和椭圆方程,消去y,可得x的方程,运用判别式大于0,韦达定理,再由A,B在直线上,代入直线方程,由垂直的条件,运用向量的数量积为0,化简整理,解方程可得b的值.
【考点精析】掌握椭圆的标准方程是解答本题的根本,需要知道椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=e2x﹣ax2+bx﹣1,其中a,b∈R,e为自然对数的底数,若f(1)=0,f′(x)是f(x)的导函数,函数f′(x)在区间(0,1)内有两个零点,则a的取值范围是(
A.(e2﹣3,e2+1)
B.(e2﹣3,+∞)
C.(﹣∞,2e2+2)
D.(2e2﹣6,2e2+2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且满足Sn=2an﹣2,若数列{bn}满足bn=10﹣log2an , 则使数列{bn}的前n项和取最大值时的n的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=2,a2=4,设Sn为数列{an}的前n项和,对于任意的n>1,n∈N* , Sn+1+Sn1=2(Sn+1).
(1)求数列{an}的通项公式;
(2)设bn= ,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥A﹣BCD中,平面ABC⊥平面BCD,△BAC与BCD均为等于直角三角形,且∠BAC=∠BCD=90°,BC=2,点P是线段AB上的动点,若线段CD上存在点Q,使得异面直线PQ与AC成30°的角,则线段PA长的取值范围是(
A.(0,
B.[0, ]
C.(
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,若 = ,则这个三角形必含有(
A.90°的内角
B.60°的内角
C.45°的内角
D.30°的内角

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax﹣lnx,x∈(0,e],g(x)= ,其中e是自然对数的底数,a∈R.
(Ⅰ)当a=1时,求函数f(x)的单调区间和极值;
(Ⅱ)求证:在(Ⅰ)的条件下,f(x)>g(x)+
(Ⅲ)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且对任意正整数n都有an= Sn+2成立.若bn=log2an , 则b1008=(
A.2017
B.2016
C.2015
D.2014

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为弘扬传统文化,某校举行诗词大赛.经过层层选拔,最终甲乙两人进入决赛,争夺冠亚军.决赛规则如下:①比赛共设有五道题;②比赛前两人答题的先后顺序通过抽签决定后,双方轮流答题,每次回答一道,;③若答对,自己得1分;若答错,则对方得1分;④先得 3 分者获胜.已知甲、乙答对每道题的概率分别为 ,且每次答题的结果相互独立.
(Ⅰ)若乙先答题,求甲3:0获胜的概率;
(Ⅱ)若甲先答题,记乙所得分数为 X,求X的分布列和数学期望 EX.

查看答案和解析>>

同步练习册答案